We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Interferon-Beta Gene Therapy Reverses Parkinson's Disease Symptoms in Mouse Model

By LabMedica International staff writers
Posted on 19 Oct 2015
Print article
Image: Micrograph showing brain cells with signs of Parkinson\'s disease (Photo courtesy of the University of Copenhagen).
Image: Micrograph showing brain cells with signs of Parkinson\'s disease (Photo courtesy of the University of Copenhagen).
The lack of cytokine interferon-beta (IFN-beta) signaling in a mouse model caused formation of Lewy bodies in the animals' brains and triggered neurodegeneration similar to that seen in the brains of human Parkinson's disease (PD) patients.

A Lewy body is composed of the protein alpha-synuclein associated with other proteins, such as ubiquitin, neurofilament protein, and alpha B crystalline. Lewy bodies are a feature of alpha-synucleinopathies such as dementia with Lewy bodies, Parkinson's disease, and multiple system atrophy. They are also found in the CA2-3 region of the hippocampus in Alzheimer's disease.

Investigators at the University of Copenhagen (Denmark) reported in the October 8, 2015, issue of the journal Cell that lack of cytokine interferon-beta (IFN-beta) signaling caused spontaneous neurodegeneration in the absence of neurodegenerative disease-causing mutant proteins. Mice lacking IFN-beta function exhibited motor and cognitive learning impairments with accompanying alpha-synuclein-containing Lewy bodies in the brain, as well as a reduction in dopaminergic neurons and defective dopamine signaling in the nigrostriatal region. Lack of IFN-beta signaling caused defects in neuronal autophagy prior to alpha-synucleinopathy, which was associated with accumulation of aged and dysfunctional mitochondria.

Recombinant IFN-beta treatment of mice lacking the cytokine reversed PD symptoms by promoting neurite growth and branching, autophagy flux, and alpha-synuclein degradation in neurons. In addition, lentiviral transfection of the interferon-beta gene and subsequent IFN-beta overexpression prevented dopaminergic neuron loss in a familial Parkinson’s disease model.

"This is one of the first genes found to cause pathology and clinical features of non-familial PD and DLB (dementia with Lewy bodies), through accumulation of disease-causing proteins. It is independent of gene mutations known from familial PD and when we introduced IFN-beta-gene therapy, we could prevent neuronal death and disease development. Our hope is that this knowledge will enable development of more effective treatment of PD," said senior author Dr. Shohreh Issazadeh-Navikas, head of the neuroinflammation unit at the University of Copenhagen.

Related Links:

University of Copenhagen 



Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
LGC Clinical Diagnostics