We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Handheld Nanopore DNA Sequencer Rapidly Detects Viral Infections in Blood Samples

By LabMedica International staff writers
Posted on 11 Oct 2015
Print article
Image: Close up of the MinION nanopore sequencer (Photo courtesy of Dr. Andrew Kilianski, Edgewood Chemical Biological Center).
Image: Close up of the MinION nanopore sequencer (Photo courtesy of Dr. Andrew Kilianski, Edgewood Chemical Biological Center).
A handheld nanopore DNA sequencer was used to accurately identify and differentiate viruses in patient blood samples with an unprecedented sample-to-answer turnaround time of less than six hours.

The Oxford Nanopore Technologies (Oxford, United Kingdom) MinION nanopore sequencer rapidly determines the sequence of subject DNA through the application of protein nanopore technology. The method is based on a protein channel—only a few nanometers in diameter—through which a single strand of DNA can pass. As the DNA strand passes through the nanopore, it generates a series of characteristic electrical signatures, from which nucleotide bases can be identified, and the sequence of the strand determined. The instrument is powered and operated by a laptop computer via a USB connection.

Investigators at the University of California, San Francisco (USA; www.ucsf.edu) used a MinION instrument to analyze blood samples from four patients for Chikungunya virus (CHIKV), Ebolavirus (EBOV), and Hepatitis C virus (HCV).

They reported that at high titers ranging from 107 to 108 copies per milliliter, reads to EBOV from two patients with acute hemorrhagic fever and CHIKV from an asymptomatic blood donor were detected within 4 to 10 minutes of data acquisition, while lower titer HCV virus (1x105 copies per milliliter) was detected within 40 minutes. Confirmation of results was obtained by sequencing with an Illumina Inc. (San Diego, CA, USA) MiSeq instrument.

Nanopore sequencing is a third-generation sequencing technology that has two key advantages over second-generation technologies—longer reads and the ability to perform real-time sequence analysis. As of mid-2015, the MinION nanopore sequencer was capable of producing at least 100,000 sequences with an average read length of five kilobases, in total producing up to one gigabase of sequence in 24 hours on one flow cell.

In the current study, the investigators presented nanopore sequencing for metagenomic detection of viral pathogens from clinical samples with a sample-to-answer turnaround time of less than six hours. They also introduced MetaPORE, a real-time web-based sequence analysis and visualization tool for pathogen identification from nanopore data.

“To our knowledge, this is the first time that nanopore sequencing has been used for real-time metagenomic detection of pathogens in complex clinical samples in the setting of human infections,” said senior author Dr. Charles Y Chiu, associate professor of laboratory medicine at the University of California, San Francisco. “Unbiased point-of-care testing for pathogens by rapid metagenomic sequencing has the potential to radically transform infectious disease diagnosis in both clinical and public health settings. This point-of-care genomic technology will be particularly attractive in the developing world, where critical resources, including reliable electric power, laboratory space, and computational server capacity, are often severely limited.

The study was published in the September 29, 2015, online edition of the journal Genome Medicine.

Related Links:

Oxford Nanopore Technologies
University of California, San Francisco
Illumina Inc.


Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The FDA clearance for the QIAstat-Dx Respiratory Panel Mini test follows the recent approval of QIAstat-Dx Respiratory Panel Plus (Photo courtesy of QIAGEN)

Respiratory Panel to Help Clinicians Make Precise Treatment Decisions in Outpatient Settings

Respiratory tract infections are the primary reason for visits to emergency departments and subsequent hospitalizations. In the U.S., it is estimated that there are up to 41 million cases of influenza... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: The new technique allows properties of cancer cells and their surrounding tissue to be analyzed in detail at single-cell level (Photo courtesy of Universität Helsinki/Karolina Punovuori)

New Imaging Method Opens Door to Precision Diagnostics for Head and Neck Cancers

Head and neck cancers, while considered rare, represent a significant portion of cancer cases and have seen a notable increase over the past 30 years. These cancers encompass various malignant tumors that... Read more