Rare Hereditary Autoimmune Disease Found to Have More Common Form
|
By LabMedica International staff writers Posted on 21 Jun 2015 |

Image: Illustrated summary of the role of the AIRE gene product and its connection to a group of autoimmune disorders now discovered to be related. The AIRE gene is expressed in a rare population of the thymus, where it is critical for educating immune cells, called T cells, to discriminate between foreign invaders and body’s own proteins. Normally (top) AIRE operates in the form of a complex made up of four identical strands. When both copies of the AIRE gene are mutated (recessive), the resulting complex (middle) is dysfunctional and patients suffer from severe autoimmune disorders. When there are specific mutations in only one copy (dominant, bottom), the protein\'s function can still be disrupted and individuals can develop autoimmune disorders with different levels of severity. (Photo courtesy of Weizmann Institute of Science).

Image: Simplified view of AIRE protein functionality versus autoimmunity, depending on double- or single-allele AIRE gene mutations (Photo courtesy of Oftedal BE et al., June 2015, in Immunity).
Researchers have discovered that single-allele mutations in the gene that causes recessive autoimmune polyendocrine syndrome type-1 (APS-1) can cause a less severe but more common condition. Findings may help identify, diagnose, and treat a number of autoimmune diseases.
APS-1, caused by recessive (double-allele) mutation in the AIRE (AutoImmune REgulator) gene, is a constellation of medical problems ranging from attack on and destruction of multiple tissues and organs, to chronic infections. According to the new study, led by Dr. Jakub Abramson of the Weizmann Institute of Science (Rehovot, Israel) and Dr. Eystein S. Husebye of the University of Bergen (Bergen, Norway), APS-1 was thought to be exceedingly rare but now appears to have a less severe form that affects at least 1 in 1,000 people. Their results suggest that a number of autoimmune disorders may be linked to mutations in AIRE.
AIRE normally prevents such autoimmune attacks by overseeing the training of immune cells to ignore self-made antigens. AIRE is almost exclusively expressed in the thymus, where T-cells undergo a “basic training” before being released into the bloodstream for defense missions. In the thymus, AIRE operates in medullary thymic epithelial cells (mTECs), which act as “examiners,” checking that released T-cells will not react to self-antigens. mTECs create a comprehensive genomic expression library of self-antigens and test T-cells for their reactions—T-cells that attack a self-antigen are eliminated in the thymus. AIRE controls the expression of the thousands of self-antigen genes within the thymus. In another recent study (Nature Immunology), Dr. Abramson’s group discovered that AIRE is itself regulated by SIRT1, present at exceptionally high levels in mTECs and keeps AIRE activated.
Current medical wisdom assumes that clinical symptoms will arise only if both AIRE alleles are dysfunctional. Dr. Abramson and Dr. Husebye challenged this widely accepted notion and found that even a single-allele mutation may disrupt function and cause devastating autoimmunity. AIRE proteins bind one another, forming an active complex. A specific mutation in one copy is enough to disrupt function of the entire complex in a dominant-like manner.
The study arose from an unusual clinical observation in Dr. Husebye’s lab where a patient had an autoimmune syndrome suggesting recessive AIRE mutations, but was revealed to be mutated in only one allele. Among the patient’s children: those carrying the single-allele mutation had also developed an autoimmune disorder, but it was milder and did not match the symptoms of the recessive syndrome. Drs. Abramson and Husebye hypothesized that such dominant AIRE mutations may be a common cause of autoimmune disorders. The two research groups performed lab experiments and examined medical data from families in Norway, Finland, and Russia who suffered from various forms of autoimmunity. They found that many of those with single-allele AIRE mutations had been diagnosed with various autoimmune disorders.
“A dominant AIRE malfunction could explain the mechanism of a number of autoimmune diseases,” said Dr. Abramson. Further research revealed that only mutations at certain sites of the AIRE gene confer dominance over the healthy gene. Interestingly, however, the healthy gene is not completely negated: The dominant version of the disease is less severe, appears later in life, and may affect fewer organs than in APS-1.
The study, by Oftedal BE et al., was published June 16, 2015, in the journal Immunity.
Related Links:
Weizmann Institute of Science
University of Bergen
APS-1, caused by recessive (double-allele) mutation in the AIRE (AutoImmune REgulator) gene, is a constellation of medical problems ranging from attack on and destruction of multiple tissues and organs, to chronic infections. According to the new study, led by Dr. Jakub Abramson of the Weizmann Institute of Science (Rehovot, Israel) and Dr. Eystein S. Husebye of the University of Bergen (Bergen, Norway), APS-1 was thought to be exceedingly rare but now appears to have a less severe form that affects at least 1 in 1,000 people. Their results suggest that a number of autoimmune disorders may be linked to mutations in AIRE.
AIRE normally prevents such autoimmune attacks by overseeing the training of immune cells to ignore self-made antigens. AIRE is almost exclusively expressed in the thymus, where T-cells undergo a “basic training” before being released into the bloodstream for defense missions. In the thymus, AIRE operates in medullary thymic epithelial cells (mTECs), which act as “examiners,” checking that released T-cells will not react to self-antigens. mTECs create a comprehensive genomic expression library of self-antigens and test T-cells for their reactions—T-cells that attack a self-antigen are eliminated in the thymus. AIRE controls the expression of the thousands of self-antigen genes within the thymus. In another recent study (Nature Immunology), Dr. Abramson’s group discovered that AIRE is itself regulated by SIRT1, present at exceptionally high levels in mTECs and keeps AIRE activated.
Current medical wisdom assumes that clinical symptoms will arise only if both AIRE alleles are dysfunctional. Dr. Abramson and Dr. Husebye challenged this widely accepted notion and found that even a single-allele mutation may disrupt function and cause devastating autoimmunity. AIRE proteins bind one another, forming an active complex. A specific mutation in one copy is enough to disrupt function of the entire complex in a dominant-like manner.
The study arose from an unusual clinical observation in Dr. Husebye’s lab where a patient had an autoimmune syndrome suggesting recessive AIRE mutations, but was revealed to be mutated in only one allele. Among the patient’s children: those carrying the single-allele mutation had also developed an autoimmune disorder, but it was milder and did not match the symptoms of the recessive syndrome. Drs. Abramson and Husebye hypothesized that such dominant AIRE mutations may be a common cause of autoimmune disorders. The two research groups performed lab experiments and examined medical data from families in Norway, Finland, and Russia who suffered from various forms of autoimmunity. They found that many of those with single-allele AIRE mutations had been diagnosed with various autoimmune disorders.
“A dominant AIRE malfunction could explain the mechanism of a number of autoimmune diseases,” said Dr. Abramson. Further research revealed that only mutations at certain sites of the AIRE gene confer dominance over the healthy gene. Interestingly, however, the healthy gene is not completely negated: The dominant version of the disease is less severe, appears later in life, and may affect fewer organs than in APS-1.
The study, by Oftedal BE et al., was published June 16, 2015, in the journal Immunity.
Related Links:
Weizmann Institute of Science
University of Bergen
Latest Immunology News
- Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
- Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
- Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
- Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
- Blood Test Could Detect Adverse Immunotherapy Effects
- Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy
- New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
- Gene Signature Test Predicts Response to Key Breast Cancer Treatment
- Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
- Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
- Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
- Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
- Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
- Luminescent Probe Measures Immune Cell Activity in Real Time
- Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
- Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







 Analyzer.jpg)