A Tool to Predict Tuberculosis Drug Resistance Now Available Online
|
By LabMedica International staff writers Posted on 09 Jun 2015 |
![Image: Mycobacterium tuberculosis (stained purple) in a tissue specimen (blue) (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention). Image: Mycobacterium tuberculosis (stained purple) in a tissue specimen (blue) (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention).](https://globetechcdn.com/mobile_labmedica/images/stories/articles/article_images/2015-06-09/GMS-170.jpg)
Image: Mycobacterium tuberculosis (stained purple) in a tissue specimen (blue) (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention).
A new online tool for the rapid analysis of whole genome sequence data is set to aid clinicians predict whether a particular patient's tuberculosis (TB) will be susceptible to frequently prescribed antibiotics.
The World Health Organization (WHO) estimated that 5% of the world's 11 million tuberculosis patients have multi-drug-resistance disease (MDR-TB) and that 480,000 new cases arose during 2013 alone. Of those approximately 9% have extensively resistant tuberculosis (XDR-TB) where, in addition to resistance to at least both of the major first line drugs (isoniazid and rifampicin), they also have resistance to two classes of second line drugs used to treat MDR-TB (the fluoroquinolones and the injectable drugs, amikacin, kanamycin, or capreomycin).
Current molecular tests examine limited numbers of mutations in Mycobacterium tuberculosis, the organism that causes TB, and although whole genome sequencing could fully characterize drug resistance, the complexity of data obtained by this technology has restricted their clinical application.
To help solve this problem investigators at the London School of Hygiene & Tropical Medicine (United Kingdom) have created an online tool that analyses and interprets genome sequence data to predict resistance to 11 drugs used for the treatment of TB. Initially, a library (1,325 mutations) predictive of drug resistance for 15 anti-tuberculosis drugs was compiled and then validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online "TB-Profiler" tool was developed to report drug resistance and strain-type profiles directly from raw sequences. The TB-Profiler tool is available on the Internet (Please see Related Links below).
Senior author Dr. Taane Clark, reader in genetic epidemiology and statistical genomics at the London School of Hygiene & Tropical Medicine, said, "Sequencing already assists patient management for a number of conditions such as HIV, but now that it is possible to sequence M. tuberculosis from sputum from suspected multi-drug resistance patients means it has a role in the management of tuberculosis. We have developed a prototype to guide treatment of patients with drug resistant disease, where personalized medicine and treatment offers improved rates of cure."
Complete information regarding the new online tool was published in the May 27, 2015, online edition of the journal Genome Medicine.
Related Links:
TB-Profiler tool
London School of Hygiene & Tropical Medicine
The World Health Organization (WHO) estimated that 5% of the world's 11 million tuberculosis patients have multi-drug-resistance disease (MDR-TB) and that 480,000 new cases arose during 2013 alone. Of those approximately 9% have extensively resistant tuberculosis (XDR-TB) where, in addition to resistance to at least both of the major first line drugs (isoniazid and rifampicin), they also have resistance to two classes of second line drugs used to treat MDR-TB (the fluoroquinolones and the injectable drugs, amikacin, kanamycin, or capreomycin).
Current molecular tests examine limited numbers of mutations in Mycobacterium tuberculosis, the organism that causes TB, and although whole genome sequencing could fully characterize drug resistance, the complexity of data obtained by this technology has restricted their clinical application.
To help solve this problem investigators at the London School of Hygiene & Tropical Medicine (United Kingdom) have created an online tool that analyses and interprets genome sequence data to predict resistance to 11 drugs used for the treatment of TB. Initially, a library (1,325 mutations) predictive of drug resistance for 15 anti-tuberculosis drugs was compiled and then validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online "TB-Profiler" tool was developed to report drug resistance and strain-type profiles directly from raw sequences. The TB-Profiler tool is available on the Internet (Please see Related Links below).
Senior author Dr. Taane Clark, reader in genetic epidemiology and statistical genomics at the London School of Hygiene & Tropical Medicine, said, "Sequencing already assists patient management for a number of conditions such as HIV, but now that it is possible to sequence M. tuberculosis from sputum from suspected multi-drug resistance patients means it has a role in the management of tuberculosis. We have developed a prototype to guide treatment of patients with drug resistant disease, where personalized medicine and treatment offers improved rates of cure."
Complete information regarding the new online tool was published in the May 27, 2015, online edition of the journal Genome Medicine.
Related Links:
TB-Profiler tool
London School of Hygiene & Tropical Medicine
Latest Microbiology News
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance
- Early Detection of Gut Microbiota Metabolite Linked to Atherosclerosis Could Revolutionize Diagnosis
- Viral Load Tests Can Help Predict Mpox Severity
- Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
Channels
Clinical Chemistry
view channel
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read more
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read moreMolecular Diagnostics
view channel
New DNA Test Tracks Spread of Parasitic Disease from Single Sample
Leishmaniasis remains a major challenge for veterinary and public health systems, largely because its transmission involves multiple sand fly species and a wide range of animal hosts. Understanding these... Read more
Hidden Blood Biomarkers to Revolutionize Diagnosis of Diabetic Kidney Disease
Diabetic kidney disease often develops silently, and many patients are diagnosed only after irreversible damage has occurred. Late diagnosis frequently leads to complications affecting the kidneys, heart,... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more






 Analyzer.jpg)

