A Tool to Predict Tuberculosis Drug Resistance Now Available Online
|
By LabMedica International staff writers Posted on 09 Jun 2015 |
![Image: Mycobacterium tuberculosis (stained purple) in a tissue specimen (blue) (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention). Image: Mycobacterium tuberculosis (stained purple) in a tissue specimen (blue) (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention).](https://globetechcdn.com/mobile_labmedica/images/stories/articles/article_images/2015-06-09/GMS-170.jpg)
Image: Mycobacterium tuberculosis (stained purple) in a tissue specimen (blue) (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention).
A new online tool for the rapid analysis of whole genome sequence data is set to aid clinicians predict whether a particular patient's tuberculosis (TB) will be susceptible to frequently prescribed antibiotics.
The World Health Organization (WHO) estimated that 5% of the world's 11 million tuberculosis patients have multi-drug-resistance disease (MDR-TB) and that 480,000 new cases arose during 2013 alone. Of those approximately 9% have extensively resistant tuberculosis (XDR-TB) where, in addition to resistance to at least both of the major first line drugs (isoniazid and rifampicin), they also have resistance to two classes of second line drugs used to treat MDR-TB (the fluoroquinolones and the injectable drugs, amikacin, kanamycin, or capreomycin).
Current molecular tests examine limited numbers of mutations in Mycobacterium tuberculosis, the organism that causes TB, and although whole genome sequencing could fully characterize drug resistance, the complexity of data obtained by this technology has restricted their clinical application.
To help solve this problem investigators at the London School of Hygiene & Tropical Medicine (United Kingdom) have created an online tool that analyses and interprets genome sequence data to predict resistance to 11 drugs used for the treatment of TB. Initially, a library (1,325 mutations) predictive of drug resistance for 15 anti-tuberculosis drugs was compiled and then validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online "TB-Profiler" tool was developed to report drug resistance and strain-type profiles directly from raw sequences. The TB-Profiler tool is available on the Internet (Please see Related Links below).
Senior author Dr. Taane Clark, reader in genetic epidemiology and statistical genomics at the London School of Hygiene & Tropical Medicine, said, "Sequencing already assists patient management for a number of conditions such as HIV, but now that it is possible to sequence M. tuberculosis from sputum from suspected multi-drug resistance patients means it has a role in the management of tuberculosis. We have developed a prototype to guide treatment of patients with drug resistant disease, where personalized medicine and treatment offers improved rates of cure."
Complete information regarding the new online tool was published in the May 27, 2015, online edition of the journal Genome Medicine.
Related Links:
TB-Profiler tool
London School of Hygiene & Tropical Medicine
The World Health Organization (WHO) estimated that 5% of the world's 11 million tuberculosis patients have multi-drug-resistance disease (MDR-TB) and that 480,000 new cases arose during 2013 alone. Of those approximately 9% have extensively resistant tuberculosis (XDR-TB) where, in addition to resistance to at least both of the major first line drugs (isoniazid and rifampicin), they also have resistance to two classes of second line drugs used to treat MDR-TB (the fluoroquinolones and the injectable drugs, amikacin, kanamycin, or capreomycin).
Current molecular tests examine limited numbers of mutations in Mycobacterium tuberculosis, the organism that causes TB, and although whole genome sequencing could fully characterize drug resistance, the complexity of data obtained by this technology has restricted their clinical application.
To help solve this problem investigators at the London School of Hygiene & Tropical Medicine (United Kingdom) have created an online tool that analyses and interprets genome sequence data to predict resistance to 11 drugs used for the treatment of TB. Initially, a library (1,325 mutations) predictive of drug resistance for 15 anti-tuberculosis drugs was compiled and then validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online "TB-Profiler" tool was developed to report drug resistance and strain-type profiles directly from raw sequences. The TB-Profiler tool is available on the Internet (Please see Related Links below).
Senior author Dr. Taane Clark, reader in genetic epidemiology and statistical genomics at the London School of Hygiene & Tropical Medicine, said, "Sequencing already assists patient management for a number of conditions such as HIV, but now that it is possible to sequence M. tuberculosis from sputum from suspected multi-drug resistance patients means it has a role in the management of tuberculosis. We have developed a prototype to guide treatment of patients with drug resistant disease, where personalized medicine and treatment offers improved rates of cure."
Complete information regarding the new online tool was published in the May 27, 2015, online edition of the journal Genome Medicine.
Related Links:
TB-Profiler tool
London School of Hygiene & Tropical Medicine
Latest Microbiology News
- CRISPR-Based Technology Neutralizes Antibiotic-Resistant Bacteria
- Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
- AI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
- New Test Measures How Effectively Antibiotics Kill Bacteria
- New Antimicrobial Stewardship Standards for TB Care to Optimize Diagnostics
- New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
- Breakthroughs in Microbial Analysis to Enhance Disease Prediction
- Blood-Based Diagnostic Method Could Identify Pediatric LRTIs
- Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
- Rapid POC Tuberculosis Test Provides Results Within 15 Minutes
- Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
- Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Channels
Clinical Chemistry
view channel
Rapid Blood Testing Method Aids Safer Decision-Making in Drug-Related Emergencies
Acute recreational drug toxicity is a frequent reason for emergency department visits, yet clinicians rarely have access to confirmatory toxicology results in real time. Instead, treatment decisions are... Read more
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read moreMolecular Diagnostics
view channel
Genetic Test Could Improve Early Detection of Prostate Cancer
Prostate cancer is the second-leading cause of cancer deaths among men in the United States and remains a major health burden. Current screening with prostate-specific antigen (PSA) blood tests can sometimes... Read more
Bone Molecular Maps to Transform Early Osteoarthritis Detection
Osteoarthritis affects more than 500 million people worldwide and is a major cause of pain, disability, and reduced quality of life. By the time it is diagnosed through symptoms and visible cartilage loss,... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read morePathology
view channel
AI Tool Helps See How Cells Work Together Inside Diseased Tissue
Microscopes have long been central to diagnosing disease by allowing doctors to examine stained tissue samples. However, modern medical research now generates vast amounts of additional data, including... Read more
AI-Powered Microscope Diagnoses Malaria in Blood Smears Within Minutes
Malaria remains one of the world’s deadliest infectious diseases, killing hundreds of thousands each year, mostly in under-resourced regions where laboratory infrastructure is limited. Diagnosis still... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channel
WHX Labs in Dubai spotlights leadership skills shaping next-generation laboratories
WHX Labs in Dubai (formerly Medlab Middle East), held at Dubai World Trade Centre (DWTC) from 10–13 February, brings together international experts to discuss the factors redefining laboratory leadership,... Read moreNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more







