A Tool to Predict Tuberculosis Drug Resistance Now Available Online
| By LabMedica International staff writers Posted on 09 Jun 2015 | 
![Image: Mycobacterium tuberculosis (stained purple) in a tissue specimen (blue) (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention). Image: Mycobacterium tuberculosis (stained purple) in a tissue specimen (blue) (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention).](https://globetechcdn.com/mobile_labmedica/images/stories/articles/article_images/2015-06-09/GMS-170.jpg)
Image: Mycobacterium tuberculosis (stained purple) in a tissue specimen (blue) (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention).
			
			A new online tool for the rapid analysis of whole genome sequence data is set to aid clinicians predict whether a particular patient's tuberculosis (TB) will be susceptible to frequently prescribed antibiotics.
The World Health Organization (WHO) estimated that 5% of the world's 11 million tuberculosis patients have multi-drug-resistance disease (MDR-TB) and that 480,000 new cases arose during 2013 alone. Of those approximately 9% have extensively resistant tuberculosis (XDR-TB) where, in addition to resistance to at least both of the major first line drugs (isoniazid and rifampicin), they also have resistance to two classes of second line drugs used to treat MDR-TB (the fluoroquinolones and the injectable drugs, amikacin, kanamycin, or capreomycin).
Current molecular tests examine limited numbers of mutations in Mycobacterium tuberculosis, the organism that causes TB, and although whole genome sequencing could fully characterize drug resistance, the complexity of data obtained by this technology has restricted their clinical application.
To help solve this problem investigators at the London School of Hygiene & Tropical Medicine (United Kingdom) have created an online tool that analyses and interprets genome sequence data to predict resistance to 11 drugs used for the treatment of TB. Initially, a library (1,325 mutations) predictive of drug resistance for 15 anti-tuberculosis drugs was compiled and then validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online "TB-Profiler" tool was developed to report drug resistance and strain-type profiles directly from raw sequences. The TB-Profiler tool is available on the Internet (Please see Related Links below).
Senior author Dr. Taane Clark, reader in genetic epidemiology and statistical genomics at the London School of Hygiene & Tropical Medicine, said, "Sequencing already assists patient management for a number of conditions such as HIV, but now that it is possible to sequence M. tuberculosis from sputum from suspected multi-drug resistance patients means it has a role in the management of tuberculosis. We have developed a prototype to guide treatment of patients with drug resistant disease, where personalized medicine and treatment offers improved rates of cure."
Complete information regarding the new online tool was published in the May 27, 2015, online edition of the journal Genome Medicine.
Related Links:
TB-Profiler tool
London School of Hygiene & Tropical Medicine
		
			
			
		
        		        
		        The World Health Organization (WHO) estimated that 5% of the world's 11 million tuberculosis patients have multi-drug-resistance disease (MDR-TB) and that 480,000 new cases arose during 2013 alone. Of those approximately 9% have extensively resistant tuberculosis (XDR-TB) where, in addition to resistance to at least both of the major first line drugs (isoniazid and rifampicin), they also have resistance to two classes of second line drugs used to treat MDR-TB (the fluoroquinolones and the injectable drugs, amikacin, kanamycin, or capreomycin).
Current molecular tests examine limited numbers of mutations in Mycobacterium tuberculosis, the organism that causes TB, and although whole genome sequencing could fully characterize drug resistance, the complexity of data obtained by this technology has restricted their clinical application.
To help solve this problem investigators at the London School of Hygiene & Tropical Medicine (United Kingdom) have created an online tool that analyses and interprets genome sequence data to predict resistance to 11 drugs used for the treatment of TB. Initially, a library (1,325 mutations) predictive of drug resistance for 15 anti-tuberculosis drugs was compiled and then validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online "TB-Profiler" tool was developed to report drug resistance and strain-type profiles directly from raw sequences. The TB-Profiler tool is available on the Internet (Please see Related Links below).
Senior author Dr. Taane Clark, reader in genetic epidemiology and statistical genomics at the London School of Hygiene & Tropical Medicine, said, "Sequencing already assists patient management for a number of conditions such as HIV, but now that it is possible to sequence M. tuberculosis from sputum from suspected multi-drug resistance patients means it has a role in the management of tuberculosis. We have developed a prototype to guide treatment of patients with drug resistant disease, where personalized medicine and treatment offers improved rates of cure."
Complete information regarding the new online tool was published in the May 27, 2015, online edition of the journal Genome Medicine.
Related Links:
TB-Profiler tool
London School of Hygiene & Tropical Medicine
Latest Microbiology News
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance
- Early Detection of Gut Microbiota Metabolite Linked to Atherosclerosis Could Revolutionize Diagnosis
- Viral Load Tests Can Help Predict Mpox Severity
- Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
- Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
- Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
Channels
Clinical Chemistry
view channel 
                    VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more 
                    Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel 
                    Blood Test Guides Post-Surgical Immunotherapy for Muscle-Invasive Bladder Cancer
After surgery for muscle-invasive bladder cancer, many patients face uncertainty about whether residual cancer cells remain in their bodies. Now, a new international phase 3 study has demonstrated that... Read more 
                    Mitochondrial DNA Mutations from Kidney Stressors Could Predict Future Organ Decline
Kidney-related diseases are alarmingly common: chronic kidney disease (CKD) affects more than one in seven U.S. adults, while about 20% of hospitalized adults are diagnosed with acute kidney injury (AKI).... Read moreHematology
view channel 
                    Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more 
                    Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more 
                    Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more 
                    Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel 
                    Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more 
                    Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more 
                    Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more 
                    Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read morePathology
view channel 
                    AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
Chronological age tells us how many years we’ve lived, but not how quickly our bodies are ageing. Some people stay healthy well into their 80s or 90s, while others experience decline much earlier.... Read more 
                    AI Tool Detects Cancer in Blood Samples In 10 Minutes
Detecting cancer recurrence or spread often depends on identifying rare tumor cells circulating in the bloodstream — a process known as a liquid biopsy. However, current methods rely on trained specialists... Read moreTechnology
view channel 
                    Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
Globally, over 300 million people live with Hepatitis B and C, and 40 million with HIV, according to WHO estimates. Diagnosing bloodborne viruses such as HIV and Hepatitis B and C remains challenging in... Read more 
                    Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
Rapid and sensitive detection of small extracellular vesicles (sEVs)—key biomarkers in cancer and organ health monitoring—remains challenging due to the need for multiple preprocessing steps and bulky... Read moreIndustry
view channel 
                    Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more 
                    















 
								

 
								 Analyzer.jpg)
 
								 
                     
                     
                     
                     
                     
                     
                     
                     
                    