Multianalyte Test Predicts Drug Resistance in Esophageal Cancer
|
By LabMedica International staff writers Posted on 16 Mar 2015 |

Image: Histopathology of esophageal carcinoma showing infiltrating nests of neoplastic cells (Photo courtesy of Dr. Elliot Weisenberg, MD).
A multianalyte algorithmic immunohistochemistry (IHC) assay accurately identifies patients with locoregional esophageal adenocarcinoma (EC) who exhibit extreme resistance to neoadjuvant chemoradiotherapy.
The test analyzes the localization of three protein biomarkers within a patient's tumor to classify the cancer as either responsive to or resistant to presurgical chemoradiotherapy and demonstrates strong accuracy and specificity in identifying patients with tumors that are unlikely to respond to standard presurgical (neoadjuvant) chemotherapy and radiation.
Scientists at Baylor College of Medicine (Houston TX, USA) and their colleagues studied archived biopsy specimens of EC which were subject to IHC examination of compartmentalized immunoreactivity of nuclear factor kappa B (NF-κB), Sonic Hedgehog (SHH), and GLI family zinc finger 1 (Gli-1), and a labeling index score was assigned to each biomarker. Pretreatment tumor biopsies were used to evaluate resistance (exCTRT) or responsiveness to (non-exCTRT) standard presurgical chemoradiotherapy (CTRT) regimens under accredited certified laboratory protocols.
According to validation studies, the DecisionDx-EC test (Castle Biosciences, Inc.; Friendswood, TX, USA) can reliably differentiate patients who are complete or partial responders to chemoradiotherapy from those who are non-responders. An initial, single center clinical validation study of 167 patients, which was used as training set for the current validation study, achieved an area under the curve (AUC) of 0.96 and an overall accuracy of 90%. The second validation, enrolled 64 patients from two independent institutions, and achieved an AUC of 0.96 and an overall accuracy of 84% for classifying which patients are likely to be highly resistant to presurgical chemotherapy treatment for esophageal cancer.
Derek Maetzold, BS, MBA, the President and CEO of Castle Biosciences, said, “Publication of these results is a culmination of our extensive program to analytically and clinically validate a new predictive test for esophageal cancer. DecisionDx-EC fits well within our strategy of developing and commercializing valuable prognostic tests that help physicians to select the most appropriate care for their patients.” The study was published on February 19, 2015, in the journal Gastrointestinal Cancer: Targets and Therapy.
Related Links:
Baylor College of Medicine
Castle Biosciences, Inc.
The test analyzes the localization of three protein biomarkers within a patient's tumor to classify the cancer as either responsive to or resistant to presurgical chemoradiotherapy and demonstrates strong accuracy and specificity in identifying patients with tumors that are unlikely to respond to standard presurgical (neoadjuvant) chemotherapy and radiation.
Scientists at Baylor College of Medicine (Houston TX, USA) and their colleagues studied archived biopsy specimens of EC which were subject to IHC examination of compartmentalized immunoreactivity of nuclear factor kappa B (NF-κB), Sonic Hedgehog (SHH), and GLI family zinc finger 1 (Gli-1), and a labeling index score was assigned to each biomarker. Pretreatment tumor biopsies were used to evaluate resistance (exCTRT) or responsiveness to (non-exCTRT) standard presurgical chemoradiotherapy (CTRT) regimens under accredited certified laboratory protocols.
According to validation studies, the DecisionDx-EC test (Castle Biosciences, Inc.; Friendswood, TX, USA) can reliably differentiate patients who are complete or partial responders to chemoradiotherapy from those who are non-responders. An initial, single center clinical validation study of 167 patients, which was used as training set for the current validation study, achieved an area under the curve (AUC) of 0.96 and an overall accuracy of 90%. The second validation, enrolled 64 patients from two independent institutions, and achieved an AUC of 0.96 and an overall accuracy of 84% for classifying which patients are likely to be highly resistant to presurgical chemotherapy treatment for esophageal cancer.
Derek Maetzold, BS, MBA, the President and CEO of Castle Biosciences, said, “Publication of these results is a culmination of our extensive program to analytically and clinically validate a new predictive test for esophageal cancer. DecisionDx-EC fits well within our strategy of developing and commercializing valuable prognostic tests that help physicians to select the most appropriate care for their patients.” The study was published on February 19, 2015, in the journal Gastrointestinal Cancer: Targets and Therapy.
Related Links:
Baylor College of Medicine
Castle Biosciences, Inc.
Latest Pathology News
- Blood Test and Sputum Analysis Predict Acute COPD Exacerbation
- AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy
- Unique Immune Signatures Distinguish Rare Autoimmune Condition from Multiple Sclerosis
- Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
- Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
- AI Tool Improves Accuracy of Skin Cancer Detection
- Highly Sensitive Imaging Technique Detects Myelin Damage
- 3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
- New Molecular Analysis Tool to Improve Disease Diagnosis
- Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
- AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
- AI Tool Detects Cancer in Blood Samples In 10 Minutes
- AI Pathology Analysis System Delivers Comprehensive Cancer Diagnosis
- AI Improves Cervical Cancer Screening in Low-Resource Settings
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Urine Test Detects Inherited Neuropathy Missed by Genetic Screening
Sorbitol dehydrogenase (SORD)-related neuropathy is one of the most common inherited nerve disorders, yet diagnosis often lags because current genetic screens frequently miss the causal gene.... Read more
Genomic Test Predicts Risk of SCC Metastasis
Managing squamous cell carcinoma (SCC) of the skin in patients with one or more risk factors is a significant clinical challenge, especially as SCC-related deaths are now estimated to exceed those from melanoma.... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








