We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Zinc Isotope Test Helps Detect Early Breast Cancer

By LabMedica International staff writers
Posted on 23 Dec 2014
Print article
Image: The Nu Plasma II multiple collector inductively coupled plasma mass spectrometry instrument (MC-ICP-MS) (Photo courtesy of Nu Instruments).
Image: The Nu Plasma II multiple collector inductively coupled plasma mass spectrometry instrument (MC-ICP-MS) (Photo courtesy of Nu Instruments).
It may be possible to detect the early signs of breast cancer with a test that measures changes in zinc isotopes as measurable changes in zinc isotope composition can be detected in breast tissue and could be used as a biomarker for early breast cancer.

Breast cancers that are found after they start to cause symptoms, for example, a new lump or swelling, or changes in nipple shape and texture, are usually larger and more likely to have started spreading than breast cancers found before symptoms emerge. The size of a breast tumor and how far it has spread are two of the most important factors in predicting the success of treatment and the longer-term outlook for the patient.

Scientists at the University of Oxford (UK) determined the zinc concentrations and isotopic composition of blood and blood serum of healthy controls and breast cancer patients, alongside a suite of 10 breast tissues, predominantly obtained from breast cancer patients. They applied techniques normally used by earth scientists to understand climate change and the birth of planets, to study how the body processes metals.

The techniques which are over 100 times more sensitive to changes in metal composition than any clinical laboratory instruments, measure the levels of trace metals in terms of the relative proportions of their different isotopic forms.

Zinc and copper concentrations were determined by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Isotope analyses were performed using the Nu Instruments Nu Plasma HR MC-ICP-MS at the appropriate resolution mode (Copper: low, Zinc: medium) with either an Aridus (Cetac; Omaha, NE, USA) or a desolvating sample system (DSN) (Nu Instruments, Oxford, UK). The reproducibility of the methods was monitored by repeat measurements of an in house standard alongside sample.

The investigators found that the breast cancer tumors had a significantly lighter zinc isotopic composition than the blood, serum and healthy breast tissue of both the breast cancer patients and the healthy controls. The team suggests the subtle differences in zinc composition occur because tumor cells process the metal differently to normal cells. They also found similar changes in copper in one of the breast cancer patients.

Fiona Larner, PhD, the lead author of the study, said, “We have known for over 10 years that breast cancer tissue carries high levels of zinc, but the underlying processes that cause this are not well understood. Our study shows that techniques commonly used in earth sciences can help us to understand not only how zinc is used by tumor cells but also how breast cancer can lead to changes in zinc in an individual's blood. Further research is already under way to see what changes in other metals may be caused by other cancers.” The study was published on December 1, 2014, in the journal Metallomics.

Related Links:

University of Oxford 
Cetac 
Nu Instruments  


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centromere B Assay
Centromere B Test
New
Myeloperoxidase Assay
IDK MPO ELISA

Print article

Channels

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Technology

view channel
Image: Pictorial representation of the working principle of a functionalized Carbon Dots CDs and EB based Func sensor (Photo courtesy of Toppari/University of Jyväskylä)

Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection

Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more

Industry

view channel
Image: BIOTIA-ID is an NGS platform that accurately and sensitively diagnoses infectious disease-causing pathogens (Photo courtesy of Adobe Stock)

New Collaboration to Advance Microbial Identification for Infectious Disease Diagnostics

With the rise of global pandemics, antimicrobial resistance, and emerging pathogens, healthcare systems worldwide are increasingly dependent on advanced diagnostic tools to guide clinical decisions.... Read more
Sekisui Diagnostics UK Ltd.