LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

“Switch Off Button” Discovered in Autoimmune Disorders

By LabMedica International staff writers
Posted on 22 Sep 2014
Print article
Image: Aggressor cells, which have the potential to cause autoimmunity, are targeted by treatment, causing conversion of these cells to protector cells. Gene expression changes gradually at each stage of treatment, as illustrated by the color changes in this series of heat maps (Photo courtesy of the University of Bristol/Dr. Bronwen Burton).
Image: Aggressor cells, which have the potential to cause autoimmunity, are targeted by treatment, causing conversion of these cells to protector cells. Gene expression changes gradually at each stage of treatment, as illustrated by the color changes in this series of heat maps (Photo courtesy of the University of Bristol/Dr. Bronwen Burton).
Scientists have made an important advance in the fight against debilitating autoimmune diseases such as multiple sclerosis by demonstrating how to stop cells destroy healthy body tissue. Instead of the body’s immune system destroying its own tissue by mistake, researchers have discovered how cells can be transformed from being aggressive to actually protecting against disease.

The study’s findings were published September 3, 2014, in the journal Nature Communications. It is hoped this latest insight will lead to the widespread use of antigen-specific immunotherapy as a treatment for many autoimmune disorders, including multiple sclerosis (MS), type 1 diabetes, systemic lupus erythematosus (SLE), and Graves’ disease. MS alone affects approximately 2.5 million people worldwide.

Scientists from the University of Bristol (UK) were able to selectively target the cells that cause autoimmune disease by dampening down their aggression against the body’s own tissues while converting them into cells capable of protecting against disease. This sort of conversion has been earlier applied to allergies, known as allergic desensitization, but its application to autoimmune diseases has only been accepted recently.

The Bristol researchers has now revealed how the administration of fragments of the proteins that are usually the target for attack leads to correction of the autoimmune response. Most significantly, their work reveals that effective treatment is achieved by gradually increasing the dose of antigenic fragment injected.

To determine how this type of immunotherapy works, the scientists delved inside the immune cells themselves to see which genes and proteins were turned on or off by the treatment. The scientists found changes in gene expression that help explain how effective treatment leads to conversion of aggressor into protector cells. The result is to restore self-tolerance whereby an individual’s immune system disregards its own tissues while remaining totally fortified to protect against infection.

By specifically targeting the cells at defect, this immunotherapeutic approach avoids the need for the immune suppressive drugs associated with unacceptable side effects such as infections, development of tumors and disruption of natural regulatory processes.

Prof. David Wraith, who led the research, said, “Insight into the molecular basis of antigen-specific immunotherapy opens up exciting new opportunities to enhance the selectivity of the approach while providing valuable markers with which to measure effective treatment. These findings have important implications for the many patients suffering from autoimmune conditions that are currently difficult to treat.”

This treatment strategy, which could enhance the lives of millions of people worldwide, is currently undergoing clinical development through biotechnology company Apitope, a spin-out from the University of Bristol.

Related Links:

University of Bristol


New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: The HelioLiver Dx test has met the coprimary and secondary study endpoints in the CLiMB trial (Photo courtesy of Helio Genomics)

Blood-Based Test Outperforms Ultrasound in Early Liver Cancer Detection

Patients with liver cirrhosis and chronic hepatitis B are at a higher risk for developing hepatocellular carcinoma (HCC), the most prevalent type of liver cancer. The American Association for the Study... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The POC PCR test shortens time for STI test results (Photo courtesy of Visby Medical)

POC STI Test Shortens Time from ED Arrival to Test Results

In a 2024 sexually transmitted infections (STIs) surveillance report by the World Health Organization (WHO), over 2.5 million cases were recorded, alongside a rise in the inappropriate use of antibiotics... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
LGC Clinical Diagnostics