Sound Waves Separate Tumor and Blood Cells
|
By LabMedica International staff writers Posted on 10 Sep 2014 |

Image: The BrdU Cell Proliferation enzyme-linked immunosorbent assay kit (Photo courtesy of Roche Diagnostics).
A device has been developed that can test a cancer patient's blood for rare tumor cells and will be extremely useful for checking if a tumor is going to spread.
The relatively small device uses “tilted” sound waves, offering an effective way of sorting cells without having to treat them with chemicals or deform them mechanically. These sound waves cross the cells' trajectory at an angle instead of going straight across, ensuring that each cell encounters several low-pressure nodes on its journey through the microchannel instead of just one.
Scientists at the Pennsylvania State University (University Park, PA, USA) working with colleagues from other institutes developed a unique configuration of tilted-angle standing surface acoustic waves (taSSAW),which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. To optimize the device design, they carried out systematic simulations of cell trajectories, matching closely with experimental results.
In their study, the team first tested their device using plastic beads and showed it could separate beads of 9.9 micrometers from beads of 7.3 micrometers in diameter with around 97% accuracy. The team also tested how well the device was able to separate a human breast cancer epithelial cell line Michigan Cancer Foundation-7 (MCF-7) that are 20 micrometers diameter from white blood cells that are about 12 micrometers in diameter. The cells also differ by compressibility and density. The results showed the cell sorter recovered around 71% of the cancer cells. One of the tests used to test cell viability and proliferation was the BrdU Cell Proliferation enzyme-linked immunosorbent assay (Roche Diagnostics, Indianapolis, IN, USA).
The team now plans to test the 18 mm device with blood samples from cancer patients in clinical settings. Circulating tumor cells are very rare as 1 mL of a typical cancer patient's blood may only contain a few tumor cells. The scientists have filed for a patent on their device. They see it helping clinicians determine whether a patient's tumor is about to spread to other sites of the body as tumors that are about to metastasize begin to send out cells that travel through the bloodstream.
The authors concluded that the simple design, low cost, and standard fabrication process of the device allows for easy integration with other laboratory-on-a-chip technologies and small radio frequency (RF) power supplies to further develop a fully integrated cell separation and analysis system. The study was published on August 25, 2014, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Related Links:
Pennsylvania State University
Roche Diagnostics
The relatively small device uses “tilted” sound waves, offering an effective way of sorting cells without having to treat them with chemicals or deform them mechanically. These sound waves cross the cells' trajectory at an angle instead of going straight across, ensuring that each cell encounters several low-pressure nodes on its journey through the microchannel instead of just one.
Scientists at the Pennsylvania State University (University Park, PA, USA) working with colleagues from other institutes developed a unique configuration of tilted-angle standing surface acoustic waves (taSSAW),which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. To optimize the device design, they carried out systematic simulations of cell trajectories, matching closely with experimental results.
In their study, the team first tested their device using plastic beads and showed it could separate beads of 9.9 micrometers from beads of 7.3 micrometers in diameter with around 97% accuracy. The team also tested how well the device was able to separate a human breast cancer epithelial cell line Michigan Cancer Foundation-7 (MCF-7) that are 20 micrometers diameter from white blood cells that are about 12 micrometers in diameter. The cells also differ by compressibility and density. The results showed the cell sorter recovered around 71% of the cancer cells. One of the tests used to test cell viability and proliferation was the BrdU Cell Proliferation enzyme-linked immunosorbent assay (Roche Diagnostics, Indianapolis, IN, USA).
The team now plans to test the 18 mm device with blood samples from cancer patients in clinical settings. Circulating tumor cells are very rare as 1 mL of a typical cancer patient's blood may only contain a few tumor cells. The scientists have filed for a patent on their device. They see it helping clinicians determine whether a patient's tumor is about to spread to other sites of the body as tumors that are about to metastasize begin to send out cells that travel through the bloodstream.
The authors concluded that the simple design, low cost, and standard fabrication process of the device allows for easy integration with other laboratory-on-a-chip technologies and small radio frequency (RF) power supplies to further develop a fully integrated cell separation and analysis system. The study was published on August 25, 2014, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Related Links:
Pennsylvania State University
Roche Diagnostics
Latest Technology News
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
- Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
- 3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
- Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Maternal Blood Test Detects Pre-Eclampsia Risk Before Symptoms Develop
Pre-eclampsia remains one of the most dangerous pregnancy complications, yet its cause is difficult to pinpoint because the disorder develops silently and is challenging to study. A major obstacle has... Read more
Blood Test Could Assess Concussion Severity in Teenagers with TBI
Diagnosing and monitoring concussion in adolescents is challenging because symptoms can persist for weeks and vary widely between patients. The need for objective tools is especially urgent for teen girls,... Read more
Simultaneous Analysis of Three Biomarker Tests Detects Elevated Heart Disease Risk Earlier
Accurately identifying individuals at high risk of heart attack remains a major challenge, especially when traditional indicators like cholesterol and blood pressure appear normal. Elevated levels of three... Read moreHematology
view channel
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Roche and Freenome Collaborate to Develop Cancer Screening Tests
Roche (Basel, Switzerland) and Freenome (Brisbane, CA, USA have entered into a strategic collaboration to commercialize Freenome's cancer screening technology in international markets.... Read more








