We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cutaneous Leishmaniasis Species Identified by Mass Spectrometry

By LabMedica International staff writers
Posted on 18 Jun 2014
Print article
Image: The BrukerAutoflex MALDI-TOF mass spectrometer (Photo courtesy of Bruker-Daltonics).
Image: The BrukerAutoflex MALDI-TOF mass spectrometer (Photo courtesy of Bruker-Daltonics).
Image: Cutaneous Leishmaniasis lesion on the hand (Photo courtesy of D.S. Martin).
Image: Cutaneous Leishmaniasis lesion on the hand (Photo courtesy of D.S. Martin).
Cutaneous leishmaniasis (CL) is caused by several Leishmania species that are associated with variable outcomes before and after therapy and optimal treatment decision is based on an accurate identification of the infecting species.

Current methods to type Leishmania isolates are relatively complex and slow and therefore, the initial treatment decision is generally presumptive, the infecting species being suspected on epidemiological and clinical grounds. A simple method to type cultured isolates would facilitate disease management.

Scientists at the University Pierre et Marie Curie (Paris, France) performed parasitological diagnosis and analysis by lesion scraping, biopsy or aspirate followed by direct examination of Giemsa-stained smears, histological analysis, Giemsa-stained tissue sections, culture or polymerase chain reaction (PCR). They also analyzed promastigote pellets from 46 strains cultured in monophasic medium, including 20 short-term cultured isolates from French travelers, 19 with CL, and one with visceral leishmaniasis and clinical isolates were analyzed in parallel with Multilocus Sequence Typing (MLST).

The promastigote pellets were analyzed by Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) technology and performed on a BrukerAutoflex I MALDI-TOF mass spectrometer (Bruker-Daltonics, Bremen, Germany). Automatic dendrogram analysis generated a classification of isolates consistent with reference determination of species based on MLST or 70 kDa heat shock protein gene (hsp70) sequencing. An analysis of the spectra, based on a very simple, database-independent analysis of spectra, showed that the mutually exclusive presence of two pairs of peaks discriminated isolates considered by reference methods to belong either to the Viannia or Leishmania subgenus, and that within each subgenus presence or absence of a few peaks allowed discrimination to species complexes level.

The authors concluded that analysis of cultured Leishmania isolates using mass spectrometry allows a rapid and simple classification to the species complex level consistent with reference methods, a potentially useful method to guide treatment decision in patients with cutaneous leishmaniasis. The intuitive interpretation of spectra was well-suited for allowing for close interactions between parasitologists and clinicians. The study was published on June 5, 2014, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:

University Pierre et Marie Curie
Bruker-Daltonics


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag

Print article

Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.