Proteomic Methods Diagnose Pancreatic Cancer
By LabMedica International staff writers Posted on 08 Apr 2014 |

Image: The LTQ-FT Orbitrap XL Hybrid Ion Trap Mass Spectrometer (Photo courtesy of Thermo Scientific).
A method has been developed that identifies pancreatic cancer's visible precursors with 97% certainty, and is expected to aid in the early discovery of the cancer as well as minimize the risk of unnecessary surgery.
The poor prognosis for pancreatic cancer, is due to the fact that the tumors often develop unnoticed, and rarely causes symptoms until they have spread to other organs, however fluid-filled compartments in the pancreas, called cysts, may be precursors of the cancer.
Scientists at the Sahlgrenska University Hospital (Gothenburg, Sweden) evaluated whether cyst fluid mucin expression could predict malignant potential and/or transformation in pancreatic cystic lesions (PCLs). A proteomic method was devised and prospectively evaluated in consecutive patients referred to a tertiary center for endoscopic ultrasound-guided aspiration of cystic lesions from May 2007 through November 2008 (discovery cohort) and from December 2008 through October 2012 (validation cohort).
Cytology and cyst fluid carcinoembryonic antigen (CEA; premalignancy greater than 192 ng/mL, malignancy greater than 1,000 ng/mL) were routinely analyzed. Samples were further processed as follows: one-dimensional gel electrophoresis, excision of high-mass areas, tryptic digestion and nanoliquid chromatography–tandem mass spectrometry, with peptide identification. Peptides were separated on a reversed column coupled to a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry instrument equipped with a 7-tesla magnet (LTQ-FT; Thermo Electron; Bremen, Germany).
Proteomic mucin profiling proved statistically significantly more accurate at 97.5%; than cytology at 71.4%, and cyst fluid CEA at 78.0% in identifying the 37/79 (46.8%) lesions with malignant potential, either premalignant or malignant tumors. The accuracy of proteomics was nearly identical, 96.6% versus 98.0%, between the 29 patients in the discovery and 50 patients in the validation cohorts. Furthermore, mucin profiling predicted malignant transformation, present in 16/29 lesions with available histology, with 89.7% accuracy.
Karolina Sjöberg Jabbar, MD, the corresponding author of the study said, “This is an exceptionally good result for a diagnostic test, and we are very hopeful that the method will enable more instances of early discovery of pancreatic cancer, at a stage when the cancer can be treated or prevented. This approach may also minimize the risk of unnecessary operations on nonmalignant cysts.” The study was published in the March 2014 issue of the Journal of the National Cancer Institute.
Related Links:
Sahlgrenska University Hospital
Thermo Electron
The poor prognosis for pancreatic cancer, is due to the fact that the tumors often develop unnoticed, and rarely causes symptoms until they have spread to other organs, however fluid-filled compartments in the pancreas, called cysts, may be precursors of the cancer.
Scientists at the Sahlgrenska University Hospital (Gothenburg, Sweden) evaluated whether cyst fluid mucin expression could predict malignant potential and/or transformation in pancreatic cystic lesions (PCLs). A proteomic method was devised and prospectively evaluated in consecutive patients referred to a tertiary center for endoscopic ultrasound-guided aspiration of cystic lesions from May 2007 through November 2008 (discovery cohort) and from December 2008 through October 2012 (validation cohort).
Cytology and cyst fluid carcinoembryonic antigen (CEA; premalignancy greater than 192 ng/mL, malignancy greater than 1,000 ng/mL) were routinely analyzed. Samples were further processed as follows: one-dimensional gel electrophoresis, excision of high-mass areas, tryptic digestion and nanoliquid chromatography–tandem mass spectrometry, with peptide identification. Peptides were separated on a reversed column coupled to a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry instrument equipped with a 7-tesla magnet (LTQ-FT; Thermo Electron; Bremen, Germany).
Proteomic mucin profiling proved statistically significantly more accurate at 97.5%; than cytology at 71.4%, and cyst fluid CEA at 78.0% in identifying the 37/79 (46.8%) lesions with malignant potential, either premalignant or malignant tumors. The accuracy of proteomics was nearly identical, 96.6% versus 98.0%, between the 29 patients in the discovery and 50 patients in the validation cohorts. Furthermore, mucin profiling predicted malignant transformation, present in 16/29 lesions with available histology, with 89.7% accuracy.
Karolina Sjöberg Jabbar, MD, the corresponding author of the study said, “This is an exceptionally good result for a diagnostic test, and we are very hopeful that the method will enable more instances of early discovery of pancreatic cancer, at a stage when the cancer can be treated or prevented. This approach may also minimize the risk of unnecessary operations on nonmalignant cysts.” The study was published in the March 2014 issue of the Journal of the National Cancer Institute.
Related Links:
Sahlgrenska University Hospital
Thermo Electron
Latest Pathology News
- AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
- Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
- Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
- Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
- Advances in Monkeypox Virus Diagnostics to Improve Management of Future Outbreaks
- Nanoneedle-Studded Patch Could Eliminate Painful and Invasive Biopsies
- AI Cancer Classification Tool to Drive Targeted Treatments
- AI-Powered Imaging Enables Faster Lung Disease Treatment
- New Laboratory Method Speeds Diagnosis of Rare Genetic Disease
- New Technology Autonomously Detects AI Hallucinations in Digital Pathology
- Novel Algorithm Rapidly Identifies Cell Types to Improve Cancer Diagnosis
- AI Method Speeds Up Cancer Tracking Using Blood Tests
- New AI Tool Improves Blood Cancer Diagnosis
- Novel Platform Technology Predicts Diseases by Early Detection of Aging Signals in Liver Tissue
- AI Model Detects More Than 170 Cancer Types
- Smartphone-Based Rapid Hemoglobin Test Accurately Detects Colorectal Cancer
Channels
Molecular Diagnostics
view channel
Genetic Test Could Predict Poor Outcomes in Lung Transplant Patients
Organ transplantation has dramatically transformed the management of patients suffering from organ failure. Yet, the immune system of the recipient often perceives the transplanted organ as a foreign entity,... Read more
Breakthrough Blood Test Enables Early Pancreatic Cancer Detection
Pancreatic cancer ranks as the fourth-leading cause of cancer-related deaths in the United States. At present, there are no molecular tools available for the early detection of this disease.... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
Current tuberculosis (TB) tests face major limitations when it comes to accurately diagnosing the infection in individuals living with HIV. HIV, a frequent co-infection with TB, complicates detection by... Read more
Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
Critically ill patients in medical intensive care units (MICUs) often suffer from conditions such as acute respiratory distress syndrome (ARDS) or sepsis, which are linked to reduced diversity of gut microbiota... Read more
Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
Urinary tract infections (UTIs) represent a massive burden on patients and healthcare systems. There are over 400 million UTI cases globally each year, of which around 90% are in women. Fast and accurate... Read more
POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
Diagnosing mucormycosis—an aggressive and often deadly fungal infection—remains a major challenge due to the disease’s rapid progression and the lack of fast, accurate diagnostic tools. The problem became... Read morePathology
view channel
AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
Pancreatic cancer poses a major global health threat due to its high mortality rate, with 467,409 deaths and 510,992 new cases reported worldwide in 2022. Often referred to as the "king" of all cancers,... Read more
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read more
Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
Saliva is one of the most accessible biological fluids, yet it remains underutilized in clinical practice. While saliva samples are used to perform genetic tests to determine, for example, paternity, the... Read moreTechnology
view channel
New Miniature Device to Transform Testing of Blood Cancer Treatments
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for blood cancers like leukemia, offering hope to patients when other treatments fail. However, despite its promise,... Read more
Biosensing Advancement to Enable Early Detection of Disease Biomarkers at POC
Traditional medical diagnostics often require clinical samples to be sent off-site, leading to time-consuming and costly processes. Point-of-care diagnostics offer a more efficient alternative, allowing... Read moreIndustry
view channel
AMP Releases Best Practice Recommendations to Guide Clinical Laboratories Offering HRD Testing
Homologous recombination deficiency (HRD) testing identifies tumors that are unable to effectively repair DNA damage through the homologous recombination repair pathway. This deficiency is often linked... Read more