We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

A Discrete Gene Signature Is a Diagnostic and Predictive Biomarker for Kidney Transplant Rejection

By LabMedica International staff writers
Posted on 15 Jul 2013
Print article
A genetic signature comprising two messenger RNA molecules that encode immune system proteins and one noncoding RNA molecule that participates in protein production has been shown to be diagnostic and prognostic of acute cellular rejection in kidney transplants.

The standard test for the diagnosis of acute rejection in kidney transplants is the renal biopsy. However, biopsy samples, in addition to being invasive with risk of infection, may not give the physician an accurate impression of the overall state of the kidney, since biopsy specimens are small and may not contain any injured tissue.

Investigators at the [US] National Institutes of Health (Bethesda, MD, USA) and colleagues at Weill Cornell Medical College (New York, NY, USA) and the University of Pennsylvania (Philadelphia, USA) sought a noninvasive test that would accurately detect or predict kidney transplant rejection.

To this end, they collected 4,300 urine specimens from 485 kidney-graft recipients from day three through month 12 after transplantation. Messenger RNA (mRNA) levels were measured in urinary cells taken from the samples and correlated with allograft-rejection status with the use of logistic regression.

The investigators found that a three-gene signature representing 18S ribosomal RNA (rRNA), CD3epsilon mRNA, and interferon-inducible protein 10 (IP-10) mRNA discriminated between biopsy specimens showing acute cellular rejection and those not showing rejection. The signature distinguished acute cellular rejection from acute antibody-mediated rejection and borderline rejection. It also distinguished patients who received anti-interleukin-2 receptor antibodies from those who received T-cell-depleting antibodies and was diagnostic of acute cellular rejection in both groups. Urinary tract infection did not affect the signature.

Levels of the signature RNAs in repeated urine samples remained below the diagnostic threshold for acute cellular rejection in the group of patients with no rejection, but in the group with rejection, there was a sharp rise during the weeks before a biopsy revealed signs of rejection.

"The test described in this study may lead to better, more personalized care for kidney transplant recipients by reducing the need for biopsies and enabling physicians to tailor immunosuppressive therapy to individual patients," said contributing author Dr. Nancy Bridges, transplantation branch chief at the [US] National Institutes of Health. "The National Institutes of Health-funded Clinical Trials in Organ Transplantation (CTOT) cooperative research consortium provided the infrastructure and collaborative environment needed to conduct the large, rigorous, multicenter study that established the efficacy of this biomarker-based test."

The study was published in the July 4, 2013, issue of the New England Journal of Medicine.

Related Links:

National Institutes of Health
Weill Cornell Medical College
University of Pennsylvania


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
H.pylori Test
Humasis H.pylori Card
New
Myeloperoxidase Assay
IDK MPO ELISA

Print article

Channels

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Technology

view channel
Image: Pictorial representation of the working principle of a functionalized Carbon Dots CDs and EB based Func sensor (Photo courtesy of Toppari/University of Jyväskylä)

Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection

Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more

Industry

view channel
Image: BIOTIA-ID is an NGS platform that accurately and sensitively diagnoses infectious disease-causing pathogens (Photo courtesy of Adobe Stock)

New Collaboration to Advance Microbial Identification for Infectious Disease Diagnostics

With the rise of global pandemics, antimicrobial resistance, and emerging pathogens, healthcare systems worldwide are increasingly dependent on advanced diagnostic tools to guide clinical decisions.... Read more
Sekisui Diagnostics UK Ltd.