Deoxyribozyme Strategy Applied to Infectious Pathogen Detection
By LabMedica International staff writers Posted on 14 Mar 2013 |
A novel strategy has integrated two emerging technologies for point-of-care (POC) analysis of infectious disease targets.
The combination of colorimetric coupling of surface plasmons of gold nanoparticles with deoxyribozymes (DNAzyme) signal amplification technology creates a fast and simple detection method for genetic targets with a simple colorimetric readout.
Scientists at the University of Toronto (ON, Canada) have generated a rapid-diagnostic biosensor that will allow technicians to test for multiple diseases at one time with one small sample, and with high accuracy and sensitivity. The biosensor relies upon gold particles in much the same vein as the average pregnancy test. With a pregnancy test, gold particles turn the test window red because the particles are linked with an antigen that detects a certain hormone in the urine of a pregnant woman.
The scientists can target a particular disease by linking gold particles with DNA strands. When a sample containing the disease gene, such as malaria, is present, it clumps the gold nanoparticles (GNP), turning the sample blue. Rather than clumping the particles together, the team immerses the gold particles in a DNA-based enzyme solution (DNAzyme) that, when the disease gene is introduced, snips the DNA from the gold particles, turning the sample red. The linker strand includes a substrate sequence that can be cleaved by a multicomponent nucleic acid enzyme (MNAzyme), which is one of the reported DNA responsive DNAzymes.
The advantage of this method is that far less of the gene needs to be present for the solution to show noticeable color changes, amplifying detection. A single DNAzyme can snip up to 600 “links” between the target genes. Just a single drop from a biological sample such as saliva or blood can potentially be tested in parallel, so that multiple diseases can be tested in one sitting. The team has also demonstrated that they can transform the testing solution into a powder, making it light and far easier to ship than solutions, which degrade over time. Powder can be stored for years at a time, and offers hope that the technology can be developed into efficient, cheap, over-the-counter tests for diseases such as Human immunodeficiency virus (HIV) and malaria for developing countries, where access to portable diagnostics is a necessity
Warren Chan, PhD, the senior author of the study, who holds a Canada Research Chair in Nanobiotechnology, said, "There's been a lot of emphasis in developing simple diagnostics. The question is how do you make it simple enough, portable enough? Gold is the best medium, because it's easy to see. It emits a very intense color." The authors concluded the MNAzyme-GNP assay provides a simple and fast colorimetric method for detection of genetic targets of bacterial, viral, and parasitic origins with 50 pM sensitivity without the need for purification and separation steps. The study was published online on February 10, 2013, in the journal Angewandte Chemie International Edition.
Related Links:
University of Toronto
The combination of colorimetric coupling of surface plasmons of gold nanoparticles with deoxyribozymes (DNAzyme) signal amplification technology creates a fast and simple detection method for genetic targets with a simple colorimetric readout.
Scientists at the University of Toronto (ON, Canada) have generated a rapid-diagnostic biosensor that will allow technicians to test for multiple diseases at one time with one small sample, and with high accuracy and sensitivity. The biosensor relies upon gold particles in much the same vein as the average pregnancy test. With a pregnancy test, gold particles turn the test window red because the particles are linked with an antigen that detects a certain hormone in the urine of a pregnant woman.
The scientists can target a particular disease by linking gold particles with DNA strands. When a sample containing the disease gene, such as malaria, is present, it clumps the gold nanoparticles (GNP), turning the sample blue. Rather than clumping the particles together, the team immerses the gold particles in a DNA-based enzyme solution (DNAzyme) that, when the disease gene is introduced, snips the DNA from the gold particles, turning the sample red. The linker strand includes a substrate sequence that can be cleaved by a multicomponent nucleic acid enzyme (MNAzyme), which is one of the reported DNA responsive DNAzymes.
The advantage of this method is that far less of the gene needs to be present for the solution to show noticeable color changes, amplifying detection. A single DNAzyme can snip up to 600 “links” between the target genes. Just a single drop from a biological sample such as saliva or blood can potentially be tested in parallel, so that multiple diseases can be tested in one sitting. The team has also demonstrated that they can transform the testing solution into a powder, making it light and far easier to ship than solutions, which degrade over time. Powder can be stored for years at a time, and offers hope that the technology can be developed into efficient, cheap, over-the-counter tests for diseases such as Human immunodeficiency virus (HIV) and malaria for developing countries, where access to portable diagnostics is a necessity
Warren Chan, PhD, the senior author of the study, who holds a Canada Research Chair in Nanobiotechnology, said, "There's been a lot of emphasis in developing simple diagnostics. The question is how do you make it simple enough, portable enough? Gold is the best medium, because it's easy to see. It emits a very intense color." The authors concluded the MNAzyme-GNP assay provides a simple and fast colorimetric method for detection of genetic targets of bacterial, viral, and parasitic origins with 50 pM sensitivity without the need for purification and separation steps. The study was published online on February 10, 2013, in the journal Angewandte Chemie International Edition.
Related Links:
University of Toronto
Latest Microbiology News
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
Channels
Clinical Chemistry
view channel
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more