We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Deoxyribozyme Strategy Applied to Infectious Pathogen Detection

By LabMedica International staff writers
Posted on 14 Mar 2013
Print article
A novel strategy has integrated two emerging technologies for point-of-care (POC) analysis of infectious disease targets.

The combination of colorimetric coupling of surface plasmons of gold nanoparticles with deoxyribozymes (DNAzyme) signal amplification technology creates a fast and simple detection method for genetic targets with a simple colorimetric readout.

Scientists at the University of Toronto (ON, Canada) have generated a rapid-diagnostic biosensor that will allow technicians to test for multiple diseases at one time with one small sample, and with high accuracy and sensitivity. The biosensor relies upon gold particles in much the same vein as the average pregnancy test. With a pregnancy test, gold particles turn the test window red because the particles are linked with an antigen that detects a certain hormone in the urine of a pregnant woman.

The scientists can target a particular disease by linking gold particles with DNA strands. When a sample containing the disease gene, such as malaria, is present, it clumps the gold nanoparticles (GNP), turning the sample blue. Rather than clumping the particles together, the team immerses the gold particles in a DNA-based enzyme solution (DNAzyme) that, when the disease gene is introduced, snips the DNA from the gold particles, turning the sample red. The linker strand includes a substrate sequence that can be cleaved by a multicomponent nucleic acid enzyme (MNAzyme), which is one of the reported DNA responsive DNAzymes.

The advantage of this method is that far less of the gene needs to be present for the solution to show noticeable color changes, amplifying detection. A single DNAzyme can snip up to 600 “links” between the target genes. Just a single drop from a biological sample such as saliva or blood can potentially be tested in parallel, so that multiple diseases can be tested in one sitting. The team has also demonstrated that they can transform the testing solution into a powder, making it light and far easier to ship than solutions, which degrade over time. Powder can be stored for years at a time, and offers hope that the technology can be developed into efficient, cheap, over-the-counter tests for diseases such as Human immunodeficiency virus (HIV) and malaria for developing countries, where access to portable diagnostics is a necessity

Warren Chan, PhD, the senior author of the study, who holds a Canada Research Chair in Nanobiotechnology, said, "There's been a lot of emphasis in developing simple diagnostics. The question is how do you make it simple enough, portable enough? Gold is the best medium, because it's easy to see. It emits a very intense color." The authors concluded the MNAzyme-GNP assay provides a simple and fast colorimetric method for detection of genetic targets of bacterial, viral, and parasitic origins with 50 pM sensitivity without the need for purification and separation steps. The study was published online on February 10, 2013, in the journal Angewandte Chemie International Edition.

Related Links:
University of Toronto


New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
High Performance Centrifuge
CO336/336R

Print article

Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.