Protein from Colonic Tissue Associated with Parkinson's
|
By LabMedica International staff writers Posted on 29 May 2012 |
Two studies suggest that colonic tissue obtained during either colonoscopy or flexible sigmoidoscopy may be used to predict who will develop Parkinson’s disease.
A protein called alpha-synuclein is deposited in cells of the brain of patients with Parkinson’s disease and is considered a pathologic hallmark of the disorder. These protein aggregates form Lewy bodies, a characteristic structure seen in Parkinson's disease brains at autopsy.
Physicians at Rush University (Chicago, IL, USA) demonstrated that the alpha-synuclein protein could also be seen in the nerve cells in the wall of the intestines in subjects with early Parkinson’s disease, but not in healthy subjects. Ten subjects with early Parkinson’s disease had flexible sigmoidoscopy. The scientists demonstrated alpha-synuclein aggregation in biological tissue obtained before onset of motor symptoms of Parkinson’s disease.
The studies were conducted by Dr. Kathleen M. Shannon, neurologist in the Movement Disorders and Parkinson’s Center at Rush, and a multidisciplinary team of scientists from the university. They also analyzed samples of tissue obtained during colonoscopy examinations that took place 2-5 years before the first symptom of Parkinson’s disease appeared in three subjects, and all three showed the characteristic protein in the wall of the lower intestine.
The studies were published the May 15, 2012, issue of the journal Movement Disorders.
Currently, Parkinson’s disease afflicts almost 5 million people worldwide. A neurodegenerative disorder of aging, it leads to progressive deterioration of motor function due to loss of neurons in the brain that produce dopamine, a neurotransmitter essential to executing movement.
“Recent clinical and pathological evidence supports the notion that Parkinson’s disease may begin in the intestinal wall then spread through the nerves to the brain. Clinical signs of intestinal disease, such as constipation, [may precede] Parkinson’s disease diagnosis by more than a decade. These studies suggest it may one day be possible to use colonic tissue biopsy to predict who will develop motor Parkinson’s disease,” said Dr. Shannon.
“Such tissue could be obtained at the time of screening colonoscopy, a procedure routinely applied for colon cancer surveillance beginning at age 50 and repeated every three to 10 years in adults of middle age,” Dr. Shannon added.
Alternatively, the Rush investigators showed that colonic tissue is easily obtained using flexible sigmoidoscopy, a technique that, unlike colonoscopy, requires no colon cleansing preparation or sedation, and can be performed in 10 minutes.
“In view of a multibillion-dollar translational research effort that aims to identify agents that slow or stop the progression of Parkinson’s disease, the need for accurate and timely diagnostic biomarkers, including the potential for premotor diagnosis, is particularly acute,” the authors stated. “We believe that alpha-synuclein in the colonic submucosa may be a premotor biomarker that easily can be studied in cohorts at increased risk of developing Parkinson’s disease.
The Rush scientists stressed that their finding must be replicated in other populations, including other neurodegenerative Parkinson’s-like disorders, and to determine the safest and highest-yield biomarker site.
Related Links:
Rush University
A protein called alpha-synuclein is deposited in cells of the brain of patients with Parkinson’s disease and is considered a pathologic hallmark of the disorder. These protein aggregates form Lewy bodies, a characteristic structure seen in Parkinson's disease brains at autopsy.
Physicians at Rush University (Chicago, IL, USA) demonstrated that the alpha-synuclein protein could also be seen in the nerve cells in the wall of the intestines in subjects with early Parkinson’s disease, but not in healthy subjects. Ten subjects with early Parkinson’s disease had flexible sigmoidoscopy. The scientists demonstrated alpha-synuclein aggregation in biological tissue obtained before onset of motor symptoms of Parkinson’s disease.
The studies were conducted by Dr. Kathleen M. Shannon, neurologist in the Movement Disorders and Parkinson’s Center at Rush, and a multidisciplinary team of scientists from the university. They also analyzed samples of tissue obtained during colonoscopy examinations that took place 2-5 years before the first symptom of Parkinson’s disease appeared in three subjects, and all three showed the characteristic protein in the wall of the lower intestine.
The studies were published the May 15, 2012, issue of the journal Movement Disorders.
Currently, Parkinson’s disease afflicts almost 5 million people worldwide. A neurodegenerative disorder of aging, it leads to progressive deterioration of motor function due to loss of neurons in the brain that produce dopamine, a neurotransmitter essential to executing movement.
“Recent clinical and pathological evidence supports the notion that Parkinson’s disease may begin in the intestinal wall then spread through the nerves to the brain. Clinical signs of intestinal disease, such as constipation, [may precede] Parkinson’s disease diagnosis by more than a decade. These studies suggest it may one day be possible to use colonic tissue biopsy to predict who will develop motor Parkinson’s disease,” said Dr. Shannon.
“Such tissue could be obtained at the time of screening colonoscopy, a procedure routinely applied for colon cancer surveillance beginning at age 50 and repeated every three to 10 years in adults of middle age,” Dr. Shannon added.
Alternatively, the Rush investigators showed that colonic tissue is easily obtained using flexible sigmoidoscopy, a technique that, unlike colonoscopy, requires no colon cleansing preparation or sedation, and can be performed in 10 minutes.
“In view of a multibillion-dollar translational research effort that aims to identify agents that slow or stop the progression of Parkinson’s disease, the need for accurate and timely diagnostic biomarkers, including the potential for premotor diagnosis, is particularly acute,” the authors stated. “We believe that alpha-synuclein in the colonic submucosa may be a premotor biomarker that easily can be studied in cohorts at increased risk of developing Parkinson’s disease.
The Rush scientists stressed that their finding must be replicated in other populations, including other neurodegenerative Parkinson’s-like disorders, and to determine the safest and highest-yield biomarker site.
Related Links:
Rush University
Latest Pathology News
- AI Tool Improves Accuracy of Skin Cancer Detection
- Highly Sensitive Imaging Technique Detects Myelin Damage
- 3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
- New Molecular Analysis Tool to Improve Disease Diagnosis
- Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
- AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
- AI Tool Detects Cancer in Blood Samples In 10 Minutes
- AI Pathology Analysis System Delivers Comprehensive Cancer Diagnosis
- AI Improves Cervical Cancer Screening in Low-Resource Settings
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
- New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
- High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
- AI Tool Detects Hidden Warning Signs of Disease Inside Single Cells
- Automated Tool Detects Early Warning Signs of Breast Cancer
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
New Biomarker Panel to Improve Heart Failure Diagnosis in Women
Heart failure affects millions worldwide, yet many women are still misdiagnosed or diagnosed too late. Although heart failure broadly means the heart cannot pump enough blood to the body’s cells, its two... Read more
Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
Diagnosing amyotrophic lateral sclerosis (ALS) remains difficult even with advanced imaging and genetic tools, especially when clinicians must distinguish it from other neurodegenerative conditions that... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read moreTechnology
view channel
AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
Early diagnosis of ovarian cancer remains one of the toughest challenges in women’s health. Traditional tools such as the Risk of Ovarian Malignancy Algorithm (ROMA) can struggle to distinguish between... Read more
Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
Early diagnosis of psychiatric disorders such as depression, schizophrenia, and bipolar disorder remains one of medicine’s most pressing challenges. Current diagnostic methods rely heavily on clinical... Read more
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more








