We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Semiconductor-Based Nanopore Sequencing Platform Developed for Molecular Diagnostics

By LabMedica International staff writers
Posted on 24 Jan 2012
A startup company is developing a semiconductor-based nanopore-sequencing platform that will be used for molecular diagnostic applications.

Genia, the Mountain View (CA, USA)-based startup has an alpha version of its single-molecule platform in hand and is currently optimizing the biochemistry for a beta system.

Stefan Roever, CEO and founder of the company declined to provide a commercialization timeline for the system or details regarding expected read length or accuracy, but noted that he believes the platform will be able to sequence genomes at a cost "one order of magnitude less" than other single-molecule systems.

He described the system as a "single-molecule electrical detection sequencing platform," and said that the company expects it to be useful for targeted resequencing and molecular diagnostics that involve both human genomics and viral or bacterial DNA.

A number of other firms are developing nanopore sequencing systems, but Stephen Roever said that Genia's focus on the underlying chip platform sets it apart from competitors.

"We focused on operationalizing the nanopores," Stephen Roever said. "We essentially developed a way to create what are effectively lipid bilayer nanopore complexes, so the biological nanopore is a transmembrane protein that's suspended in a lipid bilayer."

The company has developed a way to "automatically set up whole arrays of [the nanopores] on the surface of a semiconductor chip and integrated circuit," ultimately making a "very complicated" process "massively scalable."

"We have a working platform and chip, and we have the basic building blocks on the biochemistry side. The next step is to take those and assemble them into a robust chemistry," said Mr. Roever. "That's where the focus is going to be and there's a significant amount of work still to be done there."


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Portable Electronic Pipette
Mini 96
New
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette

Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: Erythrocyte Sedimentation Rate Sample Stability (Photo courtesy of ALCOR Scientific)

ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours

Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more