We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Diffraction Phase Microscopy Reveals Mechanics of Erythrocyte Membranes

By LabMedica International staff writers
Posted on 29 Apr 2010
Print article
Image: Erythrocytes (photo courtesy Mustafa Mir, Sam Copeland, and Gabriel Popescu. Additional information may be found at http://light.ece.uiuc.edu).
Image: Erythrocytes (photo courtesy Mustafa Mir, Sam Copeland, and Gabriel Popescu. Additional information may be found at http://light.ece.uiuc.edu).
A novel measurement technique called diffraction phase microscopy uses two beams of light in contrast to other microscopes that only use one.

Using diffraction phase microscopy a team of scientists developed a model that could lead to breakthroughs in screening and treatment of blood-cell-morphology diseases, such as malaria, sickle-cell disease, and spherocytosis. It could also be used to screen banked blood for membrane flexibility before transfusion, since stored blood often undergoes cellular shape changes.

In circulation, erythrocytes or red blood cells (RBCs) must contort to squeeze through capillaries half their diameter. Their flexibility and resilience come from their membrane structure, which couples a typical lipid bilayer with an underlying matrix of protein. However, knowledge of the membrane's mechanics is very limited.

Prof. Gabriel Popescu of the electrical and computer engineering department at the University of Illinois at Urbana Champaign (Champaign, IL, USA) and colleagues were able to see nanoscale membrane fluctuations in live cells, and to measure them quantitatively. The group published its findings in the April 13, 2010 publication of the Proceedings of the [U.S.] National Academy of Sciences (PNAS).

In addition to normal cells, the team also measured two other morphologies: bumpy RBCs called echinocytes and round ones called spherocytes. They discovered that these deformed cells display less flexibility in their membranes, a finding that could provide insight into mechanics and treatment of diseases.

Because diffraction phase microscopy measures live cells without physically manipulating or damaging them, it also could be used to evaluate medications being developed to treat blood cell morphology diseases, according to Prof. Popescu. "We can study the mechanics of a single cell under different pharmacological conditions, and I think that would be ideal for testing drugs," he said.

Related Links:
University of Illinois at Urbana Champaign


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
HPV Molecular Controls
ZeptoMetrix® HPV Type 16, 18, 45 & 68 Molecular Controls
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.