LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Circulating Plasma DNA Potentially Identifies Incipient Tumors

By LabMedica International staff writers
Posted on 06 Mar 2019
Print article
Image: A blood smear of a patient with monoclonal B-cell lymphocytosis. The two atypical lymphocytes are mature with a small rim of basophilic cytoplasm and clumped or cracked chromatin (Photo courtesy of Elizabeth Courville, MD).
Image: A blood smear of a patient with monoclonal B-cell lymphocytosis. The two atypical lymphocytes are mature with a small rim of basophilic cytoplasm and clumped or cracked chromatin (Photo courtesy of Elizabeth Courville, MD).
Early cancer diagnosis might improve survival rates. As circulating tumor DNA (ctDNA) carries cancer-specific modifications, it has great potential as a noninvasive biomarker for detection of incipient tumors.

A recent study describes another potential breakthrough by analyzing cell-free DNA (cfDNA) to identify imbalances in genome-wide copy number alterations (CNA) as a means of screening healthy individuals for cancers. Identifying tumors at early stages would offer the possibility of improved survival rates.

A team of Belgian and Dutch investigators led by those at the University Hospitals Leuven (Leuven, Belgium) developed a unique genomic profiling method for cfDNA called The Genomic Imbalance Profiling from cfDNA SEQuencing (GIPseq) method. The team collected cfDNA samples from 1,002 elderly Belgian patients with no prior history of cancer, and they used GIPseq to look for chromosomal aberrations that suggested the presence of a malignancy. Six-month clinical analyses took place in cases where aberrations were found, with investigators cataloguing any CNAs present in cfDNA to create a “map” of aberrations found in this aging population.

The scientists reported that in 3% of participants chromosomal imbalances were detected. Follow-up analyses, including whole-body MRI screening, confirmed the presence of five hematologic malignancies: one Hodgkin lymphoma (HL), stage II; three non-HL (type chronic lymphocytic leukemia, Rai I–Binet A; type small lymphocytic lymphoma (SLL), stage III; type mucosa-associated lymphoid tissue, stage I) and one myelodysplastic syndrome with excess blasts, stage II. The CNAs detected in cfDNA were tumor-specific. Furthermore, one case was identified with monoclonal B-cell lymphocytosis, a potential precursor of B-cell malignancy. In 24 additional individuals, CNAs were identified but no cancer diagnosis was made. For nine of them, the aberrant cfDNA profile originated from peripheral blood cells. For 15 others the origin of aberrations in cfDNA remains undetermined.

The authors concluded that their results illustrated the GIPseq’s effectiveness in detecting incipient hematologic malignancies and clonal mosaicism with unknown clinical significance in healthy patients. They demonstrated that cfDNA screening detects CNAs, which are not only derived from peripheral blood, but even more from other tissues. Since the clinical relevance of clonal mosaics in other tissues remains unknown, long-term follow-up is warranted. The study was published January 1, 2019, in the journal Annals of Oncology.

Related Links:
University Hospitals Leuven

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more