We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Peripheral Blood Flow Cytometry Classifies Pediatric Acute Leukemia

By LabMedica International staff writers
Posted on 25 Feb 2019
Print article
Image: The FACSCalibur flow cytometer used to immunophenotype pediatric leukemia (Photo courtesy of Becton Dickinson).
Image: The FACSCalibur flow cytometer used to immunophenotype pediatric leukemia (Photo courtesy of Becton Dickinson).
Historically, flow cytometry performed on the bone marrow aspirate (BMFC) has been the standard for the immunophenotypic characterization of acute leukemia. Recent data have demonstrated the high sensitivity and specificity of peripheral blood flow cytometry for the diagnosis of pediatric leukemia.

Peripheral blood flow cytometry (PBFC) represents a less invasive approach to the immunophenotyping of the leukemic clone, which can also facilitate a quicker diagnosis and the opportunity to subsequently perform concurrent central venous access device placement, lumbar puncture with intrathecal chemotherapy administration, and bone marrow biopsy, if necessary, under a single anesthetic.

Medical laboratory scientists at St. Jude Children's Research Hospital (Memphis, TN, USA) collected peripheral blood and BM samples were collected in preservative‐free heparin or EDTA. Cells were washed twice in phosphate‐buffered saline and labeled with various combinations of monoclonal antibodies conjugated to fluorochromes directed against surface antigens or isotype‐matched nonreactive monoclonal antibodies. The samples were processed and analyzed using four or eight color stained cell preparations with FACSCalibur or FACSCanto II flow cytometers with FACSDiva software. A minimum of 20,000 cells per tube were counted. A diagnostic minimal residual disease (MRD) panel was also implemented.

The team identified 290 PBFC samples with concurrent BM evaluation. Based on the final immunophenotypic classification, the cases were distributed as follows: 108 B‐lymphoblastic leukemia (B‐ALL), 57 T‐lymphoblastic leukemia (T‐ALL), 116 acute myeloid leukemia (AML), and nine mixed‐phenotype acute leukemia (MPAL). Among all cases, five had a diagnostically significant discrepancy between PBFC and BM evaluation. In three cases, the immunophenotype by PBFC was consistent with early T‐cell precursor ALL (ETP‐ALL), whereas BM evaluation demonstrated MPAL. Two cases were suspicious for acute megakaryoblastic leukemia (AMKL) and MPAL, T/myeloid by PBFC, but were diagnosed as B‐ALL and T‐ALL in the BM.

The authors concluded that immunophenotypic classification by PBFC is accurate in more than 98% of all cases of pediatric leukemia with the rare exceptions of suspected ETP‐ALL, MPAL, and AMKL. These PBFC diagnoses should be confirmed with BM immunophenotyping. The study was published in the January 2019 issue of the journal Pediatric Blood & Cancer.

Related Links:
St. Jude Children's Research Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more