LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Paper-Based Microfluidics Developed for Molecular Diagnostic Testing

By LabMedica International staff writers
Posted on 01 Apr 2014
Print article
Image: Colored scanning electron micrograph of a Leishmania mexicana amastigotes (Photo courtesy of Zephyris).
Image: Colored scanning electron micrograph of a Leishmania mexicana amastigotes (Photo courtesy of Zephyris).
A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing, known as lab-on-paper, has been developed.

Such diagnostic tests are in high demand, targeting diseases such as tuberculosis and leishmaniasis, mainly in the developing world, where they remain major impoverishment factors for local communities and there is a strong interest in the use of biopolymers in the electronic and biomedical industries, towards low-cost applications.

Scientists at the Universidade Nova de Lisboa (Lisbon, Portugal) have developed paper-based microfluidics for molecular diagnostic testing. Paper properties were evaluated and compared to nitrocellulose, the most commonly used material in lateral flow and other rapid tests. They focused on the use of paper as a substrate for microfluidic applications, through an eco-friendly wax-printing technology, with three main and distinct colorimetric approaches: enzymatic reactions, immunoassays, and nucleic acid sequence identification.

Colorimetric glucose quantification was achieved through enzymatic reactions performed within specific zones of the paper-based device. The coloration achieved increased with growing glucose concentration and was highly homogeneous, covering all the surface of the paper reaction zones in a three dimensional (3D) sensor format. These devices showed a major advantage when compared to the 2D lateral flow glucose sensors, where some carryover of the colored products usually occurs.

The detection of anti-Leishmania antibodies in canine sera was conceptually achieved using a paper-based 96-well enzyme-linked immunosorbent assay format. However, optimization is still needed for this test, regarding the efficiency of the immobilization of antigens on the cellulose fibers. The detection of Mycobacterium tuberculosis (MTB) nucleic acids integrated with a non-cross-linking gold nanoprobe detection scheme was also achieved in a wax-printed 384-well paper-based microplate, by the hybridization with a species-specific probe. The whole process, including the polymerase chain reaction (PCR) amplification step, takes less than two-and-half hours, which is considerably faster than traditional methods.

The authors concluded that they obtained results with the easy-to-use diagnostic biosensors that show promise towards the future development of simple and cost-effective paper-based diagnostic devices. In future studies, they will simplify the paper-platform assay for MTB by the elimination of the polymerase chain reaction step, which depends on the use of thermocycler equipment and its replacement by an undemanding isothermal DNA amplification such as loop-mediated isothermal DNA amplification (LAMP). The study was published on February 12, 2014, in the journal Nanotechnology.

Related Links:

Universidade Nova de Lisboa 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new AI tool can help beat brain tumors (Photo courtesy of Crystal Light/Shutterstock)

New AI Tool Classifies Brain Tumors More Quickly and Accurately

Precision in diagnosing and categorizing tumors is essential for delivering effective treatment to patients. Currently, the gold standard for identifying various types of brain tumors involves DNA methylation-based... Read more