LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Gene Linked to Key Heart Attack Risk Factor

By LabMedica International staff writers
Posted on 26 Mar 2014
Print article
Image: Illumina HiSeq 2500 ultra-high-throughput sequencing system (Photo courtesy of Konrad Förstner).
Image: Illumina HiSeq 2500 ultra-high-throughput sequencing system (Photo courtesy of Konrad Förstner).
A previously unrecognized gene variation that makes humans have healthier blood lipid levels and reduced risk of heart attacks has been found.

The region of DNA where it was located had been implicated as being important in controlling blood lipid levels, but although this DNA region had many genes, none of them had any obvious link to blood lipid levels.

A team of scientists from the University of Michigan (Ann Arbor, Michigan, USA) and the Norwegian University of Science and Technology (Levanger, Norway) scanned the genetic information available from a biobank of a large number of Norwegians, focusing on variations in genes that change the way proteins function. Most of what they found turned out to be already known to affect cholesterol levels and other blood lipids. Total cholesterol (TC), high density lipid (HDL) cholesterol and triglycerides were measured by an enzymatic colorimetric method using the 911 Auto-Analyzer (Hitachi; Tokyo, Japan).

Genotyping of 5,771 individuals was performed using the Human Exome BeadChips (Illumina; San Diego, CA, USA) using their Infinium HD ultra protocol. The exome array includes 247,870 markers focused on protein-altering variants. Low-pass whole-genome sequencing was performed with exome enrichment on 76 cases with myocardial infarction (MI) and 76 controls using Illumina’s Hi-Seq 2500 ultra-high-throughput sequencing system. In a minority of the Norwegians who carried a particular change in a gene, blood lipid levels were much healthier and they had a lower rate of heart attack. This gene, known as Transmembrane 6 Superfamily Member 2 (TM6SF2), may also be involved in regulating lipid levels in the liver.

Cristen Willer, PhD, the senior author of the paper, said, “Cardiovascular disease presents such a huge impact on people's lives that we should leave no stone unturned in the search for the genes that cause heart attack. While genetic studies that focused on common variations may explain as much as 30% of the genetic component of lipid disorders, we still don't know where the rest of the genetic risk comes from. This approach of focusing on protein-changing variation may help us zero in on new genes faster.” The study was published on March 16, 2014, in the journal Nature Genetics.

Related Links:

University of Michigan
Norwegian University of Science and Technology
Illumina


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more