We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

RNA Blood Test Detects Cancers and Resistance to Treatment

By LabMedica International staff writers
Posted on 22 Apr 2025
Print article
Image: The new blood test is capable of detecting cancers and resistance to treatment (Photo courtesy of Shutterstock)
Image: The new blood test is capable of detecting cancers and resistance to treatment (Photo courtesy of Shutterstock)

A newly developed blood test offers the ability to detect cancer, understand how cancer resists treatments, and assess tissue damage from non-cancerous conditions. This innovative test, created by researchers at Stanford Medicine (Stanford, CA, USA), analyzes RNA molecules found in the bloodstream. Known as cell-free RNA, these molecules are fragments that no longer reside within cells. Blood contains natural byproducts of cell death from various tissues and organs, including cancerous tumors, in the form of both DNA and RNA fragments. After over six years of research, the team developed new techniques to focus on messenger RNA in blood, which they used to identify cancer at different stages, track resistance to treatments, and monitor healthy tissue injury.

Cell-free RNA is present in very small quantities in blood, with around 95% being ribosomal RNA that forms cellular structures responsible for protein synthesis. The new test specifically analyzes messenger RNA, which makes up less than 5% of the total cell-free RNA pool, as these molecules provide a signal about which genes are being expressed as proteins. A paper detailing the methodology and potential uses of this cell-free RNA blood test was published in Nature. The researchers focused their analysis on around 5,000 genes that are typically not found in the blood of healthy individuals, referred to as rare abundance genes. By concentrating on these genes, the test's ability to accurately detect cancer was increased by more than 50 times. The test identified lung cancer RNA in 73% of lung cancer patients, even at early stages. By detecting cell-free messenger RNA, the blood test is able to monitor conditions that don’t rely on the genetic mutations detected by traditional DNA-based tests, such as identifying resistance mechanisms to cancer treatments.

The team also faced a challenge in eliminating the influence of platelets, which contain RNA but no DNA and are responsible for clotting. To address this, the researchers developed a combination of molecular and computational techniques that filter out the effects of platelets, ensuring clearer signals from cancer. This method works not only on fresh blood samples but also on samples that have been stored previously. Beyond cancer detection, the new cell-free RNA method has shown promise in non-cancer applications. It successfully detected elevated levels of normal lung RNA in the blood of patients with acute respiratory distress syndrome (ARDS), a condition that severely damages the lungs and leads to cell death. Additionally, normal lung RNA levels in blood samples from COVID-19 patients correlated with the severity of their illness. The test also found normal lung RNA in the blood of healthy smokers, possibly indicating subtle lung damage caused by smoking.

“Just as archeologists can learn about ancient societies by studying the garbage they left behind, we can learn a lot about what is going on in the cells of a patient’s body based on the degraded RNA molecules that are cleared through the blood,” said co-lead author Maximilian Diehn, MD, PhD, and the Jack, Lulu, and Sam Willson Professor and a Stanford Medicine professor of radiation oncology. “We have developed a sensitive, versatile new type of liquid biopsy that measures cell-free and circulating-tumor RNA and has the potential to enhance personalized medicine in cancer and non-cancer diseases.”

“Unfortunately, a significant fraction of our patients who are being treated for cancer go on to have their therapy stop working, and that resistance is often based on adaptations that do not involve genetic changes, but instead altering how the cells behave or even how the cells look under a microscope,” added Ash Alizadeh, MD, PhD, the Moghadam Family Professor and a professor of medicine, oncology and hematology, who co-led the study with Diehn. “Our non-invasive approach has the potential of avoiding surgical biopsies and identifying these common types of resistance earlier before substantial disease burden shows up on scans or presents with symptoms like pain, providing an earlier opportunity to change treatment and improve outcomes.”

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
Multi-Function Pipetting Platform
apricot PP5

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.