LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanopore-Based Tool Detects Disease with Single Molecule

By LabMedica International staff writers
Posted on 03 Jan 2025
Print article

Detecting diseases typically requires identifying millions of molecules. The molecules targeted for detection—such as specific DNA or protein molecules—are extremely small, about one-billionth of a meter in size. As a result, the electrical signals they generate are tiny and require specialized equipment for accurate detection. Scientists have now developed a nanopore-based technology that could revolutionize disease diagnosis by capturing signals from individual molecules, enabling faster and more precise testing than current methods.

Researchers at UC Riverside (Riverside, CA, USA) are working on creating electronic sensors that mimic the behavior of neurons in the brain, capable of "remembering" molecules that have previously passed through the sensor. To achieve this, the team designed a new circuit model that detects small changes in the sensor's behavior. Central to their circuit is a nanopore, an extremely small opening that allows molecules to pass through one at a time. Biological samples are introduced into the system along with salts that break down into ions. When DNA or protein molecules from the sample pass through the nanopore, they cause a reduction in the flow of ions. To process the resulting electrical signals, the system must account for the possibility that some molecules might not be detected as they move through the nanopore.

What sets this discovery apart is that the nanopore not only functions as a sensor but also acts as a filter, minimizing background noise from other molecules that could interfere with detecting critical signals. Traditional sensors require external filters to eliminate unwanted signals, but these filters can unintentionally remove valuable information. The new technology ensures that every molecule's signal is retained, thereby enhancing the accuracy of diagnostic applications. The team at UCR envisions the technology being used to create a compact, portable diagnostic device—roughly the size of a USB drive—that could detect infections at their earliest stages. Unlike current tests, which may take days to detect infections, nanopore sensors could identify them within 24 to 48 hours, offering a significant advantage in diagnosing fast-spreading diseases and enabling earlier treatment.

Apart from diagnostics, this device also holds promise for advancing protein research. Proteins play critical roles in cell function, and even small structural changes can impact health. Current diagnostic tools struggle to differentiate between healthy proteins and disease-causing ones due to their similar structures. However, the nanopore technology can detect subtle differences between individual proteins, which could help physicians create more personalized treatments. Additionally, this research brings scientists closer to achieving single-molecule protein sequencing, a long-sought biological goal. While DNA sequencing reveals genetic information, protein sequencing provides insight into how that genetic information is expressed and modified in real time. This deeper understanding could lead to earlier disease detection and more targeted, personalized therapies.

“Right now, you need millions of molecules to detect diseases. We’re showing that it’s possible to get useful data from just a single molecule. This level of sensitivity could make a real difference in disease diagnostics,” said Kevin Freedman, assistant professor of bioengineering at UCR and lead author of a paper about the tool in Nature Nanotechnology. “Nanopores offer a way to catch infections sooner—before symptoms appear and before the disease spreads. This kind of tool could make early diagnosis much more practical for both viral infections and chronic conditions.”

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Silver Member
ACTH Assay
ACTH ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.