LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Breakthrough Method to Enable Early Risk Stratification of Deadly Blood Cancer

By LabMedica International staff writers
Posted on 04 Dec 2024
Print article
Image: The breakthrough by Dr. Sabine Mai and her team enables early risk-stratification of smoldering multiple myeloma (Photo courtesy of University of Manitoba)
Image: The breakthrough by Dr. Sabine Mai and her team enables early risk-stratification of smoldering multiple myeloma (Photo courtesy of University of Manitoba)

Multiple myeloma is an incurable blood cancer, with patients typically surviving an average of eight years after diagnosis. Those with smoldering multiple myeloma experience no symptoms until the disease advances to multiple myeloma. However, there is currently no reliable method in clinical settings to predict which patients will progress to multiple myeloma. Now, new research has demonstrated a novel technique that can accurately predict the likelihood that a patient with smoldering multiple myeloma will develop full-blown multiple myeloma.

In a groundbreaking study, researchers at the University of Manitoba (Winnipeg, Canada) utilized three-dimensional (3D) imaging and microscopy to examine genetic material within a patient's cells, revealing genomic changes and instability. By focusing on the telomeres, the protective ends of chromosomes, the 3D measurement tools developed by the team could determine whether a cell is stable or cancerous, even before symptoms emerge.

To achieve these pioneering results, the researchers employed single-cell nuclear imaging using 3D analysis. They also applied super-resolution imaging to observe cancer-related DNA and the genomic structure at a nanometer scale. This advanced technology holds promise not only for identifying smoldering multiple myeloma progression but also for detecting other types of cancer. The findings, co-published in the American Journal of Hematology, build on previous research identifying thyroid cancer histotypes published last year.

“This breakthrough allows us to risk-stratify smoldering multiple myeloma to identify the subgroup with high risk of progression, which allows for tailored treatments of this risk group,” said Dr. Sabine Mai, UM Canada Research Chair in genomic instability and nuclear architecture in cancer, who led the research team. “Equally important, the published assay [lab procedure] allows us to monitor the larger subgroup of patients with stable smoldering multiple myeloma.”

If we apply the right treatments early enough, the outcome will be the increased progression-free survival of patients — and potentially someday, a cure for myeloma,” added Dr. Mai.

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myeloperoxidase Assay
IDK MPO ELISA
New
Multi-Function Pipetting Platform
apricot PP5

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.