New Screening Technique Identifies Genes Behind Heart Cell Damage from Chemotherapy
By LabMedica International staff writers Posted on 03 Dec 2024 |

Doxorubicin is a potent chemotherapy drug that effectively targets cancer cells, but it also disrupts heart cells, causing them to beat irregularly, organize incorrectly, or even die. When used in high doses or over extended periods, doxorubicin can lead to heart failure, which limits its use despite its cancer-fighting effectiveness. Now, researchers may have uncovered why doxorubicin harms heart cells and identified a drug that could keep them beating.
A team of researchers at Stanford Medicine (Stanford, CA, USA) has developed a genetic screening tool using CRISPR, a powerful gene-editing technology, to identify genes involved in doxorubicin-induced heart damage. Through this method, they identified a gene that seemed to play a key role in the drug's harmful effects on the heart. Although it was known that doxorubicin damages heart cells, the specific genes responsible for this damage were unclear. The researchers focused their search on 2,300 genes that are already targeted by existing drugs. They utilized a novel genetic screening technique to observe the effects of doxorubicin on heart cells derived from induced pluripotent stem cells, which can differentiate into any cell type. By using CRISPR to turn on or off individual genes within these heart cells, the researchers exposed the cells to doxorubicin and noted which ones survived. The next step was to understand why these cells survived. To uncover this, the researchers sequenced the DNA of each cell, searching for genetic markers associated with survival.
Their findings revealed that the heart cells that survived after doxorubicin treatment lacked a gene called CA12. This gene is responsible for catalyzing reactions involving carbon dioxide, which helps regulate essential body functions such as respiration and saliva production. Further genetic tests confirmed their hypothesis: when CA12 was deleted from heart cells, they became resistant to doxorubicin-induced damage. While the exact role of CA12 during doxorubicin treatment is still not fully understood, the researchers are working to figure out its function. Once CA12 was identified as a critical factor in doxorubicin toxicity, the team sought a way to prevent the CA12 protein from causing harm to heart cells. They selected 40 drugs known to inhibit carbonic anhydrase proteins like CA12 and tested them alongside doxorubicin on heart cells. By comparing the survival rates of these cells, they identified which drugs helped the cells survive the treatment.
Their research, published in Cell Stem, found that a drug called indisulam, currently being studied as a potential cancer treatment, helped heart cells survive doxorubicin toxicity. Indisulam protected the heart cells’ ability to contract and relax, maintaining essential cellular functions. The next phase of the research involved testing indisulam in living organisms. Mice were treated with doxorubicin and then given either indisulam or a control. The mice that received indisulam along with doxorubicin showed improved heart function, less heart atrophy, and better-maintained heart cell structure. The researchers are now focused on understanding how indisulam blocks CA12 activity and plan further testing to reduce doxorubicin’s toxicity. Additionally, they aim to explore how multiple genes work together in causing heart cell damage, rather than focusing on one gene at a time. The team has ambitious plans for their CRISPR-based screening tool and intends to apply it beyond heart cell toxicity in future studies.
“This CRISPR screen is a valid tool for drug discovery. That, to me, is the key take-home message of the study,” said Joseph Wu, MD, PhD, a professor of cardiovascular medicine and the director of the Stanford Cardiovascular Institute. “It’s a proof of principle. In the future you could use it for other types of toxicity or diseases. We think it’s a very powerful tool.”
Latest Immunology News
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
- Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients
- Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival
- Computational Tool Predicts Immunotherapy Outcomes for Metastatic Breast Cancer Patients
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Philips and Ibex Expand Partnership to Enhance AI-Enabled Pathology Workflows
Royal Philips (Amsterdam, The Netherlands) has expanded its partnership with Ibex Medical Analytics (Tel Aviv, Israel) and released the new Philips IntelliSite Pathology Solution (PIPS) to further accelerate... Read more
Grifols and Inpeco Partner to Deliver Transfusion Medicine ‘Lab of The Future’
Grifols (Barcelona, Spain), a manufacturer of plasma-derived medicines and innovative diagnostic solutions, has entered into a strategic agreement with Inpeco (Novazzano, Switzerland), a global leader... Read more