LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Approach to Help Predict Drug Resistance in Malaria and Infectious Diseases

By LabMedica International staff writers
Posted on 29 Nov 2024
Image: This medium is used to grow malaria parasites (Photo courtesy of Kyle Dykes/UC San Diego Health Sciences)
Image: This medium is used to grow malaria parasites (Photo courtesy of Kyle Dykes/UC San Diego Health Sciences)

Malaria, a disease transmitted by mosquitoes that affects millions worldwide, remains a significant public health concern, especially in tropical and subtropical regions. Despite significant efforts to control the disease, malaria continues to be one of the leading causes of illness and death, particularly in Africa, where the World Health Organization reports that 95% of malaria-related deaths occur. The effectiveness of first-line drugs has been compromised due to the emergence of drug-resistant strains of Plasmodium falciparum, the parasite responsible for malaria. Recently, researchers have examined the genomes of hundreds of malaria parasites to identify genetic variations linked to drug resistance. Their findings, published in Science, could help researchers apply machine learning to predict antimalarial drug resistance and more efficiently prioritize promising experimental treatments for development. This method might also extend to predicting resistance in other infectious diseases and even in cancer.

A team of researchers at the University of California San Diego (San Diego, CA, USA) studied the genomes of 724 lab-evolved malaria parasites that had developed resistance to 118 different antimalarial drugs, including both established and experimental treatments. By examining the mutations associated with resistance, they were able to pinpoint distinct genetic features, such as their location within genes, that could predict which genetic variations are most likely to contribute to drug resistance. The implications of these findings are crucial for developing new antimalarial drugs, and the researchers emphasize that their approach could be applied to a range of diseases.

This is because the genetic mechanisms behind drug resistance are similar across different pathogens and even within human cells. For instance, many of the mutations driving resistance in P. falciparum were found in a protein called PfMDR1, which transports substances within the cell, including expelling drugs from their intended site of action. A human counterpart of PfMDR1 exists, and mutations in this protein also play a significant role in treatment resistance in cancer.

“A lot of drug resistance research can only look at one chemical agent at a time, but what we’ve been able to do here is create a roadmap for understanding antimalaria drug resistance across more than a hundred different compounds,” said Elizabeth Winzeler, Ph.D., a professor at UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and the Department of Pediatrics at UC San Diego School of Medicine. “These results will be useful for other diseases as well, because many of the resistant genes we studied are conserved across different species.”

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
PCR Plates
Diamond Shell PCR Plates
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more