LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Innovative LAMP Molecular Diagnostic Test Diagnoses Chagas Disease in Newborns

By LabMedica International staff writers
Posted on 04 Jul 2024
Print article
Image: The LAMP molecular diagnostic test could be used to detect T. cruzi infection -responsible for Chagas disease- in newborns (Photo courtesy of ISGlobal)
Image: The LAMP molecular diagnostic test could be used to detect T. cruzi infection -responsible for Chagas disease- in newborns (Photo courtesy of ISGlobal)

T. cruzi infection leads to Chagas disease in newborns, with vertical (congenital) transmission accounting for 20% of new cases. This transmission occurs when an infected mother transfers the parasite to her baby during pregnancy. Consequently, early detection of the parasite in both women and newborns is a critical public health concern. However, the challenge lies in the absence of simple, rapid, and reliable testing methods. In affluent nations like Spain, newborn diagnosis can be conducted using PCR, but this method is costly and requires trained professionals. In regions where the disease is endemic, typically two microscopy tests are administered—one at birth and another at two months. These tests have low sensitivity and are usually followed by a serological test months later to identify antibodies against the parasite. The multiple tests and the delay between them heighten the risk of delayed treatment for affected children. Now, an innovative test combining a DNA extraction system, inspired by a modified 3D printer, with loop-mediated isothermal molecular amplification (LAMP), could potentially detect T. cruzi infection in newborns.

This was the conclusion of a group of researchers at the Barcelona Institute for Global Health (ISGlobal, Barcelona, Spain) after a study conducted in Bolivia’s Chaco region, a hotspot for Chagas disease. In this study published in the journal The Lancet Microbe, the team tested a novel diagnostic method that integrates the LAMP technique with a 3D printer modified to extract DNA from a small blood sample. The effectiveness of this method was benchmarked against PCR and traditional diagnostic approaches (microscopy and serology). The study tracked 224 infants born to mothers seropositive for T. cruzi over eight months, identifying 23 cases of congenital transmission—nine detected by microscopy at birth and an additional 14 by serology eight months later.

The LAMP test successfully identified 13 out of the 23 cases early in the process, detecting four more cases than microscopy and nearly matching the 14 cases detected by PCR. This indicates that LAMP’s sensitivity surpasses microscopy and is comparable to PCR. An added benefit of the LAMP test is its potential cost-effectiveness and minimal infrastructure needs. In accordance with national guidelines for diagnosing and treating congenital Chagas disease, all detected cases were treated successfully, underscoring the vital role of early detection and intervention. The research team emphasized that this study served as a proof of concept for the LAMP diagnostic test’s viability, suggesting that further trials should be conducted on a broader scale and in more centers. If its efficacy is validated, this test could also be employed to detect acute infections in adults or to evaluate the efficacy of treatments.

"In endemic regions, it would be very useful to have a simple, rapid and sensitive test to detect the parasite in newborns, when treatment is most effective," said Julio Alonso Padilla, researcher at ISGlobal.

Related Links:
ISGlobal

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit
New
Auto Clinical Chemistry Analyzer
cobas c 703

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.