LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

TB Blood Test Could Detect Millions of Silent Spreaders

By LabMedica International staff writers
Posted on 26 Mar 2024
Print article
Image: The blood test could identify millions of people who spread TB unknowingly (Photo courtesy of University of Southampton)
Image: The blood test could identify millions of people who spread TB unknowingly (Photo courtesy of University of Southampton)

Tuberculosis (TB) is the world's deadliest infectious disease, claiming over one million lives annually as reported by the World Health Organization. TB's transmission occurs through the air when an infected person coughs or sneezes, releasing minute droplets that can affect not just the lungs but any body part. The fight against TB's spread is significantly hampered by the current testing methods, which are not only slow but also depend on specialized equipment and laboratory settings. Consequently, nearly three million TB cases went undetected last year, predominantly in developing nations, with a third of infected individuals remaining undiagnosed and, thus, contagious. In a significant development, scientists have advanced towards developing a blood test capable of detecting millions of people who are unknowingly transmitting TB.

In a pioneering study conducted by the University of Southampton (Southampton, UK), researchers have identified a specific group of biological markers present in high levels in individuals who are infectious. This discovery holds the promise of a simple diagnostic test capable of identifying and halting the spread of the disease, which affects an estimated 10 million people each year. Collaborating with international experts, these scientists performed the most detailed examination of blood markers associated with this bacterial infection. Utilizing an innovative approach, they identified six proteins that show a high degree of accuracy in identifying individuals with active TB.

The research team analyzed blood proteins from people with active TB located in Africa and South America, comparing these biomarkers against those found in healthy individuals and others with lung infections. They discovered 118 proteins that varied markedly between these groups. From these, they narrowed down to six proteins which they found could be used to effectively differentiate individuals with contagious TB from those who are healthy or have other lung ailments. This breakthrough finding paves the way for the development of a TB test which could be as simple as the lateral flow tests widely used during the recent pandemic.

“In our study, we combined a new measurement technique with deep mathematical analysis to identify these six new markers of TB disease,” said Dr. Hannah Schiff, a respiratory expert at Southampton. “It could lead to a transformative alternative to diagnosing the condition – a simple test that detects proteins in the bloodstream whose levels differ between people with TB, healthy individuals, and those suffering from other respiratory illnesses.”

Related Links:
University of Southampton

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Sekisui Diagnostics UK Ltd.