Computer-Aided Cell Analysis Enables Faster Diagnosis of Blood Diseases
|
By LabMedica International staff writers Posted on 11 Aug 2023 |

Blood disorders are frequently characterized by alterations in the quantities and shapes of red and white blood cells. Traditional methods for diagnosing the disease involves examining blood smears on a slide under a microscope, although evaluating these changes can be challenging even for experienced professionals, as subtle alterations can affect only a small fraction of the tens of thousands of visible cells. Consequently, distinguishing between diseases is not always simple. For instance, the visible changes in the blood of individuals with myelodysplastic syndrome (MDS), an early form of leukemia, often resemble those seen in less harmful types of anemia. The definitive diagnosis of MDS requires more invasive procedures such as bone marrow biopsies and molecular genetic testing.
Scientists from the German Cancer Research Center (DKFZ, Heidelberg, Germany) and the Cambridge Stem Cell Institute (Cambridge, UK) have now developed an artificial intelligence (AI) system capable of identifying and characterizing white and red blood cells in microscopic images of blood samples. This algorithm, named Haemorasis, aids physicians in diagnosing blood disorders and is publicly accessible as an open-source tool for research purposes. Initially, the scientists trained Haemorasis to recognize cell morphology using over half a million white blood cells and millions of red blood cells from more than 300 individuals with various blood disorders (including different forms of anemia and MDS).
Leveraging this acquired knowledge, Haemorasis can now propose diagnoses for blood disorders and even differentiate genetic subtypes of these conditions. Additionally, the algorithm uncovers significant associations between specific cell shapes and diseases, a task complicated by the sheer volume of cells involved. Haemorasis underwent testing on three distinct patient groups to confirm its efficacy across diverse test centers and blood count scanner systems. Tailored for hematology diagnostics, Haemorasis aids in providing a more accurate initial diagnosis of blood disorders, which is an essential step in identifying patients who may require more invasive procedures like bone marrow tests or genetic analysis. Ongoing studies will explore the potential limitations of the method.
"Automated cell analysis with Haemorasis could complement routine diagnosis of blood disorders in the future. So far, the algorithm has only been trained on specific diseases - but we still see great potential in this approach," said Moritz Gerstung of DKFZ.
Related Links:
German Cancer Research Center
Cambridge Stem Cell Institute
Latest Pathology News
- AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
- Deep Learning–Based Method Improves Cancer Diagnosis
- ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
- New Age-Based Blood Test Thresholds to Catch Ovarian Cancer Earlier
- Genetics and AI Improve Diagnosis of Aortic Stenosis
- AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
- Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
- Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
- Common Health Issues Can Influence New Blood Tests for Alzheimer’s Disease
- Blood Test Formula Identifies Chronic Liver Disease Patients with Higher Cancer Risk
- Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
- AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
- AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
- Diagnostic Technology Performs Rapid Biofluid Analysis Using Single Droplet
- Novel Technology Tracks Hidden Cancer Cells Faster
- AI Tool Improves Breast Cancer Detection
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreMolecular Diagnostics
view channel
Genetic Test Could Detect Predisposition to Pancreatic Cancer
Pancreatic ductal adenocarcinoma is one of the deadliest cancers, largely because it is usually diagnosed at an advanced stage when treatment options are limited. The lack of effective population screening... Read more
Blood Test Predicts Crohn’s Disease Years Before Symptoms Appear
Crohn’s disease is a chronic inflammatory disorder of the gastrointestinal tract that causes persistent digestive symptoms, pain, and fatigue, often leading to lifelong treatment. Incidence rates are rising... Read moreHematology
view channel
AI Algorithm Effectively Distinguishes Alpha Thalassemia Subtypes
Alpha thalassemia affects millions of people worldwide and is especially common in regions such as Southeast Asia, where carrier rates can reach extremely high levels. While the condition can have significant... Read more
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read moreImmunology
view channel
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read more
New Antimicrobial Stewardship Standards for TB Care to Optimize Diagnostics
Antibiotic resistance is rising worldwide, threatening the effectiveness of treatments for major infectious diseases, including tuberculosis (TB). Resistance to key TB drugs, such as bedaquiline, is of... Read moreTechnology
view channel
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read more
AI-Generated Sensors Open New Paths for Early Cancer Detection
Cancers are far easier to treat when detected early, yet many tumors remain invisible until they are advanced or have recurred after surgery. Early-stage disease often produces signals that are too weak... Read moreIndustry
view channel
WHX Labs Dubai to Gather Global Experts in Antimicrobial Resistance at Inaugural AMR Leaders’ Summit
World Health Expo (WHX) Labs in Dubai (formerly Medlab Middle East), which will be held at Dubai World Trade Centre from 10-13 February, will address the growing global threat of antimicrobial resistance... Read more







