LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Immune Microenvironment Characterized in Multiple Myeloma Progression

By LabMedica International staff writers
Posted on 30 Nov 2022
Print article
Image: The 10X Genomics Chromium Single Cell Gene Expression Solution (Photo courtesy of Technion Israel Institute of Technology)
Image: The 10X Genomics Chromium Single Cell Gene Expression Solution (Photo courtesy of Technion Israel Institute of Technology)

Multiple myeloma (MM) is a malignant disease of plasma cells (PCs) that reside within the bone marrow (BM). Early alterations within the bone marrow microenvironment that contribute to the progression of MM from its precursor stages could be the key to identifying novel therapeutic approaches.

The disease transitions from the precursor stages, monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM), to clinically aggressive disease. Although the outcomes have improved, the disease remains largely incurable once progression has occurred.

Clinical Scientists at the University of Arkansas for Medical Sciences (Little Rock, AR, USA) and their international colleagues collected primary BM and peripheral blood (PB) samples were from nine patients with MGUS, seven with SMM, and 10 with newly diagnosed MM (NDMM). CD138-depleted BM samples were viably frozen in dimethyl sulfoxide at a final concentration of 10% and processed for single-cell RNA sequencing (scRNA-seq) and T-cell receptor (TCR) sequencing.

The team used single-cell RNA sequencing of bone marrow cells with the 10× Genomics Single Cell 5′ version kit (Pleasanton, CA, USA) that was performed on the PC-depleted mononuclear fraction of BM aspirates from patients. Single-cell capture (target, 3,000 cells), reverse transcription, library preparation (expression and TCR), and paired-end sequencing were performed. All BM samples were further investigated by eight color flow cytometry using CD138, CD38, CD45, CD19, CD56, CD20, CD27, and CD81 to distinguish B-, T-, NK-, and immature B-cell subsets as well as monocytes. Preprocessing of the 10× scRNA-seq and TCR data was performed with CellRanger.

The scientists identified changes in immune cell populations as the disease progressed, which were characterized by a substantial decrease in memory and naïve CD4 T cells, and an increase in CD8+ effector T cells and T-regulatory cells. These alterations were further accompanied by an enrichment of nonclonal memory B cells and an increase in CD14 and CD16 monocytes in MM compared with its precursor stages. T cells were by far the largest subpopulation with 27,621 of the total 62,044 cells (44.5%) and were clustered into 10 distinct T-cell subpopulations. T cells were divided into two main clusters, consisting of CD4 and CD8 T cells. B cells were divided into naïve B cells and Memory B cells.

The investigators reported that memory B cells showed a striking expansion from MGUS to NDMM in both data sets and the meta-analysis. Alterations were further accompanied by an enrichment of nonclonal memory B cells and an increase in CD14 and CD16 monocytes in MM compared with its precursor stages.

The authors concluded that their results provide crucial information on the immune changes associated with the progression to clinical MM and can help to develop immune-based strategies for patient stratification and early therapeutic intervention. The study was published on November 22, 2022 in the journal Blood Advances.

Related Links:
University of Arkansas for Medical Sciences 
10× Genomics

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more