We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI Combined with Molecule-Making Machine Could Make Complex Chemistry Automated and Accessible

By LabMedica International staff writers
Posted on 31 Oct 2022
Print article
Image: The team combined powerful AI and a molecule-making machine to find the best conditions for automated complex chemistry (Photo courtesy of University of Illinois at Urbana-Champaign)
Image: The team combined powerful AI and a molecule-making machine to find the best conditions for automated complex chemistry (Photo courtesy of University of Illinois at Urbana-Champaign)

Automated synthesis machines for proteins and nucleic acids such as DNA have revolutionized research and chemical manufacturing in those fields, but many chemicals of importance for pharmaceutical, clinical, manufacturing and materials applications are small molecules with complex structures. A team of researchers had earlier pioneered the development of simple chemical building blocks for small molecules. They had also developed an automated molecule-making machine that snaps together the buildings blocks to create a wide range of possible structures. Now, the team has combined artificial intelligence (AI), “building-block” chemistry and a molecule-making machine to find the best general reaction conditions for synthesizing chemicals important to biomedical and materials research – a finding that could speed innovation and drug discovery as well as make complex chemistry automated and accessible.

With the machine-generated optimized conditions, researchers at the University of Illinois at Urbana-Champaign (Champaign, IL, USA), the Polish Academy of Sciences’ Institute for Organic Chemistry (IOC PAS, Warsaw, Poland), and the University of Toronto (Toronto, ON, Canada) doubled the average yield of a special, hard-to-optimize type of reaction linking carbon atoms together in pharmaceutically important molecules. The researchers say their system provides a platform that also could be used to find general conditions for other classes of reactions and solutions for similarly complex problems. An automated approach with generalized conditions could help standardize how chemists make some products, addressing the problem of reproducibility.

Published studies reflect conditions that are popular or convenient, rather than the best, so a systematic approach that included diverse data and negative results was necessary, according to the researchers. First, the team ran the entire matrix of possible combinations using the building-block chemistry through an algorithm to group together similar reactions. Then, the AI sent instructions, inputted to a machine in the Molecule Maker Lab located in the Beckman Institute for Advanced Science and Technology, to produce representative reactions from each cluster. The information from those reactions fed back into the model; the AI learned from the data and ordered more experiments from the molecule machine.

The process identified conditions that doubled the average yield of a challenging class of reactions, called heteroaryl Suzuki-Miyaura coupling, crucial for many biological and materials-relevant compounds. The machine-learning process could also be applied to other broad areas of chemistry to find the best reaction conditions for other types of small molecules or even larger organic polymers, the researchers say.

“Generality is critical for automation, and thus making molecular innovation accessible even to nonchemists,” said study co-leader Dr. Martin D. Burke. “The challenge is the haystack of possible reaction conditions is astronomical, and the needle is hidden somewhere inside. By leveraging the power of artificial intelligence and building-block chemistry to create a feedback loop, we were able to shrink the haystack. And we found the needle.”

Related Links:
University of Illinois at Urbana-Champaign 
IOC PAS 
University of Toronto 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more