Microchip Imaging Cytometry Makes Laboratory Testing More Economical, Easy-to-Use and Accessible
|
By LabMedica International staff writers Posted on 25 Aug 2022 |

The economic globalization and the aging population of many countries in the world generate an enormous need for rapid and cost-effective point-of-need laboratory tests. Over the past two years, the entire world has been tackling challenges from COVID-19 pandemic. The general population in many countries are routinely taking nucleic acid tests and/or rapid antigen tests for screening purposes. Healthcare workers are in need of more economical, and easy-to-use diagnostic testing tools to support their healthcare practice. Public health agencies also need powerful diagnostic tools to help them make critical policy decisions. In a typical clinic appointment, laboratory tests go through procedures such as lab requisition, sample collection, sample processing, and reporting. The average turn-around-time may vary from several hours to several days. For many disease diagnoses and monitoring requiring instant information and rapid decision-making, the traditional technology and workflow could not effectively meet the clinical needs.
Meanwhile, there is the “rapid test strip” option such as the COVID antigen test strip and the hCG pregnancy test strip that provides instant test results. These rapid test strips become an important diagnostic tool for screening and monitoring, although the application of the test strips is usually restricted to qualitative tests. Additionally, because of their relatively lower analytical sensitivity, these rapid test strips could not detect biomarkers that have a low quantity in the specimen. Therefore, there is a growing need to develop a quantitative, easy-to-use, and accessible diagnostic instrument and reagents. Given the emerging healthcare needs, scientists and engineers continuously come up with creative diagnostic solutions using a variety of technological approaches. Among these technologies, microfluidics becomes a highly valuable approach to potentially address many of the requirements. Microchip imaging cytometry (MIC) based on microfluidic technologies is such an innovative analytical platform that may change the landscape of the clinical lab testing field.
A team of researchers at the University of Toronto (Toronto, ON, Canada) have published a paper in Opto-Electronic Advances (OEA) that addresses scientific and technical advances in the field of MIC and shows the applications of MIC that may bring more economical, easy-to-use, and accessible healthcare to the public. MIC is a platform technology that can rapidly detect and analyze human biochemical substances such as cells, proteins, and nucleic acids. MIC devices have the attributes of portability, cost-effectiveness, and adaptability while providing quantitative measurements to meet the needs of laboratory testing in a variety of healthcare settings. Based on the use of microfluidic chips, MIC requires less sample and may complete sample preparation automatically. Therefore, they can provide quantitative testing results simply using a finger prick specimen. The decreased reagent consumption and reduced form factor also help improve the accessibility and affordability of healthcare services in remote and resource-limited settings.
The article reviews notable clinical applications of MIC technologies, such as HIV-patient monitoring, sickle disease screening, infectious disease diagnosis, etc. Depending on the level of automation and image capturing formats, MIC devices were classified into three approaches: Static-chip-static-fluid (SCSF), Static-chip-moving-fluid (SCMF) and Moving-chip-static-fluid (MCSF). Brightfield imaging, fluorescence imaging, and lens-free imaging techniques have been adopted in MIC systems. Image acquisition techniques such as time delay integration and temporally coded excitation were demonstrated to achieve higher sensitivity in detecting fast-moving objects in low light levels.
Compared with traditional flow cytometers, MIC analyzes objects such as cells and particles through a relatively wide and shallow microfluidic chip channel. As a result of the breakthrough development of semiconductor sensor devices and information technology in recent years, the light source and imaging detection components of MIC can also achieve higher optoelectronic performance. Thanks to the innovation and development of biotechnology, micro-nano manufacturing, semiconductor materials, information technology, and other fields, MIC will find more important clinical test applications in the future, and promote the development of more economical, easy-to-use, and accessible point-of-need tests. Recent advances in photonics, integrated optics, and imaging technologies promise to increase the sensitivity and functionality of MIC systems while decreasing their size and cost. Colors can be differentiated directly on the silicon CMOS image sensors using several techniques. Progress towards higher sensitivity detectors has also been made by integrating single-photon avalanche diodes in standard CMOS with microfluidic systems.
The development of MIC devices should focus on the following aspects: 1) the device should be portable to fit the diagnostic purpose in varying healthcare scenarios, 2) the device should be easy to use and provide sample-to-answer results rapidly (e.g. 15 minutes), 3) the microfluidic assembly should contain pre-loaded reagents and be disposable. Additionally, the analytical performance of MIC devices, such as sensitivity, accuracy, precision, robustness, needs to meet the certain testing requirements. In the process of instrument and reagent design and development, all these aspects need to be considered. Therefore, engineering design and development need to find the sophisticated balance between complexity, performance and cost, to meet the needs in healthcare and to benefit more patients.
Latest Industry News
- BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
- Abbott Acquires Cancer-Screening Company Exact Sciences
- Roche and Freenome Collaborate to Develop Cancer Screening Tests
- Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
- Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
- Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
- Advanced Instruments Merged Under Nova Biomedical Name
- Bio-Rad and Biodesix Partner to Develop Droplet Digital PCR High Complexity Assays
- Hologic to be Acquired by Blackstone and TPG
- Bio-Techne and Oxford Nanopore to Accelerate Development of Genetics Portfolio
- Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders
- Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes
- GSI Group Acquires Blood Processing Equipment Manufacturer GenesisBPS
- ELITech and Hitachi High-Tech to Develop Automated PCR Testing System for Infectious Diseases
- Lumiquick Acquires Aoxre to Expand Global IVD and Research Capabilities
- Lunit and Agilent Partner to Develop AI-Powered Cancer Diagnostics
Channels
Clinical Chemistry
view channel
POC Breath Diagnostic System to Detect Pneumonia-Causing Pathogens
Pseudomonas aeruginosa is a major cause of hospital-acquired and ventilator-associated pneumonia, particularly in lung transplant recipients and patients with structural lung disease. Its ability to form... Read more
Online Tool Detects Drug Exposure Directly from Patient Samples
Doctors often rely on patient interviews and medical records to determine what medications a person has taken, but this information is frequently incomplete. People may forget drugs they used, take over-the-counter... Read moreMolecular Diagnostics
view channel
STI Molecular Test Delivers Rapid POC Results for Treatment Guidance
An affordable, rapid molecular diagnostic for sexually transmitted infections (STIs) has the potential to be globally relevant, particularly in resource-limited settings where rapid, point-of-care results... Read more
Blood Biomarker Improves Early Brain Injury Prognosis After Cardiac Arrest
After a cardiac arrest, many patients remain unconscious for days, leaving doctors and families facing uncertainty about whether meaningful recovery is possible. Current tools to assess brain damage, including... Read more
Biomarkers Could Identify Patients at High Risk of Severe AKI After Major Surgery
Acute kidney injury is one of the most common and dangerous complications after major surgery, particularly among patients in intensive care. Even mild impairment of kidney function can lead to long-term... Read more
CLIA Test Identifies Head and Neck Cancer Recurrence from Post-Surgical Lymphatic Fluid
While the lymphatic system’s critical role in metastasis has long been recognized, routine access to patient lymph has been elusive. Now, a non-invasive process can access lymph through the collection... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreBlood Test Could Detect Adverse Immunotherapy Effects
Immune checkpoint inhibitors have transformed cancer treatment, but they can also trigger serious immune-related adverse events that damage healthy organs and may become life-threatening if not detected early.... Read moreMicrobiology
view channel
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read more
Blood-Based Diagnostic Method Could Identify Pediatric LRTIs
Lower-respiratory tract infections (LRTIs) are a leading cause of illness and death worldwide, and pneumonia is the leading infectious cause of death in children under five, claiming the lives of over... Read morePathology
view channel
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read more
Common Health Issues Can Influence New Blood Tests for Alzheimer’s Disease
Blood-based tests for Alzheimer’s disease are transforming diagnosis by offering a simpler alternative to spinal taps and brain imaging. However, many people evaluated at memory clinics also live with... Read more
Blood Test Formula Identifies Chronic Liver Disease Patients with Higher Cancer Risk
Chronic liver disease affects millions worldwide and can progress silently to hepatocellular carcinoma (HCC), one of the deadliest cancers globally. While surveillance guidelines exist for patients with... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more








