LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI Holography System Accurately Checks Quality of Red Blood Cells

By LabMedica International staff writers
Posted on 15 Aug 2022
Print article
Image: AI holography system checks blood quality without injections (Photo courtesy of Pexels)
Image: AI holography system checks blood quality without injections (Photo courtesy of Pexels)

Red blood cells are a major component of blood that carries oxygen. Red blood cells collected through blood donation are stored for a certain period of time until they are used for transfusion when needed. This process is necessary because unhealthy red blood cells do not function properly and may lead to fatal side effects such as acute lung damage. Conventionally, image-based red blood cell analysis technology is used, which is an invasive method that destroys the three-dimensional structure of red blood cells as red blood cells are observed after staining. In addition, there are technical limitations in rapidly analyzing state changes such as three-dimensional shape, density change, and motility characteristics of red blood cells. To overcome this problem, a research team has developed an AI holography system that automatically extracts important information and inspects the quality of red blood cells. The new system is expected to become a key technology for enabling cleaner and healthier red blood cell injections to patients through accurate quality inspection of red blood cells stored for a certain period of time for blood transfusion.

Scientists at Daegu Gyeongbuk Institute of Science and Technology (DGIST, Daegu, Korea) had earlier developed 'holography-based red blood cell division and classification technology.' However, this requires a number of pre-processing algorithms before analysis, which takes a long time, and involves difficulties in performing accurate analysis and classification. In response, the team successfully developed an AI holography system that automatically inspects the quality of red blood cells stored for a certain time by combining the 3D structure image data of red blood cells obtained with holography technology and generative adversarial neural network technology.

If the developed technology is used, it will be possible to automatically extract important values ​​of judgment for red blood cells by applying the automatic red blood cell 3D structural image analysis algorithm and also check its quality. In particular, it is possible to test the quality of red blood cells precisely and simply as there is no need for invasive methods or pre-treatment procedures required by existing technologies. It is expected to be used as a core technology to help minimize the side effects of transfusion by injecting clean and healthy red blood cells to patients needing blood transfusions.

“The technology developed through this research is the source technology that can automatically analyze how red blood cells, stored for transfusion, change their three-dimensional shape depending on the storage period and determine whether stored red blood cells are healthy red blood cells that can be transfused,” said Professor Moon In-kyu of the Department of Robotics and Mechatronics Engineering at DGIST who led the research team. “It is expected that it will help minimize the occurrence of side effects after transfusion in the future as it can check the state of stored red blood cells more minutely and test whether the red blood cells are safe for the patient before transfusion.”

Related Links:
DGIST 

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Sekisui Diagnostics UK Ltd.