LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Diagnostic Solution Identifies Sepsis Causing Microorganisms and Predicts Antibiotic Resistance in 90 Minutes

By LabMedica International staff writers
Posted on 06 Jun 2022
Print article
Image: The Weezion dx solution is designed for medical analysis hospital platforms that diagnose bacteremia (Photo courtesy of Weezion)
Image: The Weezion dx solution is designed for medical analysis hospital platforms that diagnose bacteremia (Photo courtesy of Weezion)

Sepsis is a life-threatening organ dysfunction caused by the body’s toxic response to infection and can progress to septic shock, which has a mortality rate of 40%. A blood culture is the main way to check for the microbial agent (bacteria or fungi) causing the infection and will allow to diagnose the bacteremia or fungemia as well as determine the sensitivity of these microorganisms to antibiotics and antifungals. The speed at which appropriate treatment can be administered, based on the type of infection, determines the survival of the patient. Now, a new in-vitro diagnostic solution for microbial infections identifies the pathogen(s) as well as allows to identify and predict the resistance profile within 90 minutes to ensure that the appropriate anti-infective treatment can be adapted or administered quickly, reducing the risk of death in severe systemic infections.

Weezion’s (Lyon, France) Weezion dx solution is based on a proteomic approach using patented targeted mass spectrometry technology and identifies the pathogen(s) present in the clinical sample, as well as jointly detects and quantifies the proteins responsible for antibiotic resistance. Using a positive blood culture, the solution allows clinicians to identify and predict the resistance profile within 90 minutes.

Despite major advances in the last 20 years in understanding the pathophysiology of sepsis, no therapeutic revolution has yet seen the light of day. It is therefore in the diagnostic phase where progress can be made. Reducing the time to receive the results of the identification of the pathogen and its resistance profile will ensure a more rapid implementation or adaptation of a suitable anti-infective treatment. Existing identification methods, based on the molecular detection of the main pathogens and some of their resistance genes, are expensive and non-exhaustive. MALDI/TOF mass spectrometry technology has shortened the identification phase but does not provide any prediction of resistance. The rapid antibiogram from a positive blood culture vial takes several hours of incubation before validation and most of the technologies used are expensive. Therefore there is an urgent need for a resistance identification and determination tool that is rapid, more comprehensive than current methods and economically sustainable.

Designed for medical analysis hospital platforms that diagnose bacteremia, the Weezion dx solution is comprised of an operational pre-analytical sample protocol from a blood culture aliquot that requires limited manual or automated steps, in less than 10 minutes. It follows a global analytical protocol that guarantees a 90-minute diagnostic phase and allows the management of three blood culture samples per hour in order to satisfy the maximum flow of large hospital microbiology platforms. It includes prototype software to manage the decision tree of the mass spectrometry and enables identification of a panel of scout ribosomal peptides specific to microbial families or species that allows for the implementation of a decision tree to ensure accurate identification of 98% of pathogens associated with bacteremia. The Weezion dx solution also enables the identification of a panel of peptides that detects the resistance mechanisms to the three main types of antibiotics used to treat bacteremia.

Related Links:
Weezion 

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.