LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mitochondrial Damage May Explain the Increased Incidence of Hypertension in Black Adults

By LabMedica International staff writers
Posted on 03 Mar 2022
Print article
Image: Monitoring blood pressure (Photo courtesy of 123rf.com)
Image: Monitoring blood pressure (Photo courtesy of 123rf.com)

Increased plasma concentration of the enzyme xanthine oxidase (XO) and the resulting mitochondrial DNA damage that it can cause may explain why Blacks have a significantly higher incidence of hypertension than their White counterparts.

Investigators at the University of Alabama (Birmingham, USA) had previously reported that increased plasma XO activity in patients with resistant hypertension could cause mitochondrial DNA damage and promote release of fragments called mitochondrial DNA damage-associated molecular patterns (mtDNA DAMPs). Xanthine oxidase is widely distributed in the heart, liver, gut, lung, kidney and brain, as well as in blood plasma. In its normal metabolic function, it generates oxygen radicals as a byproduct, including hydrogen peroxide and superoxide, which are reactive oxygen species that can damage DNA.

Considering that Black adults in the United States have one of the highest rates of hypertension in the world and have a 50% increased incidence of heart failure as compared to Whites, the investigators examined the importance of racial differences in XO activity and mtDNA DAMPs in adults with resistant hypertension.

The experimental cohort for this study included 91 resistant hypertension patients, 44% of whom were Black, and 37 controls with normal blood pressures. The resistant hypertension group all had blood pressures above 140/90 millimeters of mercury (mmHg), and all were on four or more medications for treatment of their high blood pressure.

Results revealed that Black resistant hypertension patients were younger (mean age 52±10 versus 59±10 years), with higher XO activity and left ventricular wall thickness, and worse diastolic dysfunction than White resistant hypertension patients. Urinary sodium excretion was positively related to left ventricular end-diastolic volume and left ventricular mass among Black but not White resistant hypertension patients. Patients with resistant hypertension had increased mtDNA DAMPs versus controls, with Black mtDNA DAMPS greater than Whites.

Transmission electron microscopy of skeletal muscle biopsies in resistant hypertension patients demonstrated mitochondrial damage such as cristae lysis, myofibrillar loss, large lipid droplets, and glycogen accumulation.

"Xanthine oxidase activation may set up a feed-forward cycle of mitochondrial damage, mitochondrial reactive oxygen species production, mtDNA DAMP release, and inflammation in the pathogenesis of hypertension end-organ injury," said senior author Dr. Louis J. Dell'Italia, professor emeritus of cardiovascular disease at the University of Alabama. "These results warrant a larger study that includes metabolic syndrome and xanthine oxidase as a potential therapeutic target to reduce mitochondrial damage and attenuate left ventricular diastolic dysfunction in Black adults with resistant hypertension. Although Black adults have the highest death rate for heart failure, they are consistently underrepresented in clinical trials. The greater heart failure burden among Black adults calls for further work to discover effective preventive and therapeutic strategies for this higher-risk population."

The study was published in the February 15, 2022, online edition of the journal Hypertension.

Related Links:
University of Alabama 

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.