We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Immune-Profiling Method Reports Specific Immune Cell Types Using Only DNA from Blood

By LabMedica International staff writers
Posted on 10 Feb 2022
Print article
Illustration
Illustration

A novel immune-profiling method can return detailed immune cell type proportions using only DNA from blood with no requirement for intact cells, potentially allowing for individualized prediction of outcomes in immunotherapy patients.

Researchers at Dartmouth-Hitchcock Medical Center (Lebanon, NH, USA) have introduced the novel immune-profiling method that is capable of reporting specific immune cell types using only DNA from blood rather than from fresh cell samples. Flow cytometry is a powerful and complex technology used to count, sort or measure characteristics of cells and to detect biomarkers. It is also widely used in research, as well as in clinical studies and diagnosis of disorders such as blood cancers. However, flow cytometry requires intact and usually fresh cells that must be processed promptly to preserve cell integrity and surface markers. Those surface (and a few nuclear) markers are used to identify immune cell types.

The new approach offers the opportunity to ask and answer questions about the immune system in health and disease using the millions of stored blood samples from biobanks worldwide - samples that already exist for other reasons. In the clinical setting, the complete cell blood count (CBC) differential is used routinely to diagnose patient conditions and is limited to five general immune cell types. In the new method, immune cell identification is extended to include twelve immune cell types, including several that are not determined with CBC, such as naïve and memory T and B cells. Large-scale human population studies and clinical trials can now access detailed information about individual immune status in a standardized, cost-effective manner, without some of the limitations of existing methods. The advancement paves the way for new research of systemic immune factors in disease and aging.

When the method was applied to cancer patients, immune profile responses to chemotherapy and radiation therapy were observed. The researcher are now investigating how this new method may help predict response to immunotherapy. The team’s next steps are to evaluate the many potential uses for this new tool to understand how it will best and most immediately benefit clinicians and patients. Such technology could elicit a paradigm shift in the way clinicians, patients and researchers harness and understand information about the immune system in health and disease.

“Our technology requires minimal input to use blood DNA samples stored under different conditions,” says lead author Lucas A. Salas, MD, MPH, PhD, member of NCCC's Cancer Population Sciences Research Program (CPS) and Assistant Professor of Epidemiology at the Geisel School of Medicine at Dartmouth. “This is ideal in population epidemiological research and potentially for clinical settings where samples cannot be processed immediately.”

Related Links:
Dartmouth-Hitchcock Medical Center 

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Benchtop Cooler
PCR-Cooler & PCR-Rack
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more