Intratumor Heterogeneity Analyzed in Neuroblastoma
By LabMedica International staff writers Posted on 22 Dec 2021 |

Image: Histopathology of a typical neuroblastoma with rosette formation (Photo courtesy of Dr. Mark Applebaum, MD)
Neuroblastoma is the most common solid pediatric tumour, accounting for 15% of cancer-related deaths in early childhood and especially for patients directly diagnosed with high-risk neuroblastoma have a poor prognosis.
Tumors are heterogeneous, which means that different parts of the same tumor can be genetically distinct. This phenomenon, known as intratumor heterogeneity, is steadily gaining in significance within the field of oncology. Cellular and molecular differences within the same tumor play an important role in many different cancers due to their implications for diagnosis and the use of targeted therapies.
A large team of pediatric oncologists at the Charité-Universitätsmedizin Berlin (Berlin, Germany) and their colleagues collected tumor samples from 10 patients who were enrolled in a study between 2014 and 2018. Samples were collected by open surgical biopsy either at diagnosis, at tumour resection after 4–6 cycles of chemotherapy or at diagnosis of relapse. Fresh samples were immediately snap-frozen in liquid nitrogen and stored at −80 °C. Portions of tumour material were formalin-fixed and paraffin-embedded (FFPE) in parallel for diagnostics and preservation in the pathology unit. The team analyzed a total of 140 neuroblastoma samples.
Peripheral blood collected from each patient was used as a matched germline control for tumor samples. DNA was prepared using the Qiagen DNA Mini kit (Qiagen, Venlo, the Netherlands). The SureSelect Human All Exon V6 kit (Agilent Technologies, Santa Clara, CA, USA) was used to prepare libraries enriched with exonic sequences. The libraries were further prepared for sequencing using the Illumina TruSeq Exome Kit and sequenced on Illumina HiSeq 2500 and Illumina NextSeq sequencers (Illumina, San Diego, CA, USA). A list of genes potentially involved in neuroblastoma development was compiled by combining lists of potential cancer driver genes from several sources.
The investigators focused their analysis on the neuroblastoma-associated genes ALK, MYCN and FGFR1, which play an important role in both clinical course and treatment. According to their results, changes in the ALK and MYCN genes were not present continuously throughout the course of the disease, nor were they found in all tumor cells. Changes in the ALK and FGFR1 genes can offer useful treatment targets, particularly in relapsed patients. They found that, in some patients, ALK mutations which were present at the time of diagnosis had disappeared by the time the tumor was surgically removed. Changes in the FGFR1 gene were only found in distinct tumor regions. The scientists were also able to identify an instability in the number of gene copies present in neuroblastoma cells.
Angelika Eggert, MD, a Professor of Pediatric Oncology and a senior author of the study, said, “We are now in a better position to understand how neuroblastoma cells behave. This knowledge is essential in relation to patients who suffer a recurrence of their disease because their treatment often requires the use of personalized and targeted therapies. When a tumor presents as genetically heterogeneous, targeted molecular therapy may well capture a majority of the abnormal tissue but, crucially, will not capture all of the affected cells. The cancer will then be able to regrow from those remaining cells.”
The authors conclude that their in-depth analysis of neuroblastoma intratumor heterogeneity reveals that extensive genetic heterogeneity and subclonal diversification evolves under therapy and may have important implications for the clinical interpretation of molecular diagnostic results and for the selection of appropriate second-line treatment approaches. The study was published on November 23, 2021 in the journal Nature Communications.
Related Links:
Charité-Universitätsmedizin Berlin
Qiagen
Agilent Technologies
Illumina
Tumors are heterogeneous, which means that different parts of the same tumor can be genetically distinct. This phenomenon, known as intratumor heterogeneity, is steadily gaining in significance within the field of oncology. Cellular and molecular differences within the same tumor play an important role in many different cancers due to their implications for diagnosis and the use of targeted therapies.
A large team of pediatric oncologists at the Charité-Universitätsmedizin Berlin (Berlin, Germany) and their colleagues collected tumor samples from 10 patients who were enrolled in a study between 2014 and 2018. Samples were collected by open surgical biopsy either at diagnosis, at tumour resection after 4–6 cycles of chemotherapy or at diagnosis of relapse. Fresh samples were immediately snap-frozen in liquid nitrogen and stored at −80 °C. Portions of tumour material were formalin-fixed and paraffin-embedded (FFPE) in parallel for diagnostics and preservation in the pathology unit. The team analyzed a total of 140 neuroblastoma samples.
Peripheral blood collected from each patient was used as a matched germline control for tumor samples. DNA was prepared using the Qiagen DNA Mini kit (Qiagen, Venlo, the Netherlands). The SureSelect Human All Exon V6 kit (Agilent Technologies, Santa Clara, CA, USA) was used to prepare libraries enriched with exonic sequences. The libraries were further prepared for sequencing using the Illumina TruSeq Exome Kit and sequenced on Illumina HiSeq 2500 and Illumina NextSeq sequencers (Illumina, San Diego, CA, USA). A list of genes potentially involved in neuroblastoma development was compiled by combining lists of potential cancer driver genes from several sources.
The investigators focused their analysis on the neuroblastoma-associated genes ALK, MYCN and FGFR1, which play an important role in both clinical course and treatment. According to their results, changes in the ALK and MYCN genes were not present continuously throughout the course of the disease, nor were they found in all tumor cells. Changes in the ALK and FGFR1 genes can offer useful treatment targets, particularly in relapsed patients. They found that, in some patients, ALK mutations which were present at the time of diagnosis had disappeared by the time the tumor was surgically removed. Changes in the FGFR1 gene were only found in distinct tumor regions. The scientists were also able to identify an instability in the number of gene copies present in neuroblastoma cells.
Angelika Eggert, MD, a Professor of Pediatric Oncology and a senior author of the study, said, “We are now in a better position to understand how neuroblastoma cells behave. This knowledge is essential in relation to patients who suffer a recurrence of their disease because their treatment often requires the use of personalized and targeted therapies. When a tumor presents as genetically heterogeneous, targeted molecular therapy may well capture a majority of the abnormal tissue but, crucially, will not capture all of the affected cells. The cancer will then be able to regrow from those remaining cells.”
The authors conclude that their in-depth analysis of neuroblastoma intratumor heterogeneity reveals that extensive genetic heterogeneity and subclonal diversification evolves under therapy and may have important implications for the clinical interpretation of molecular diagnostic results and for the selection of appropriate second-line treatment approaches. The study was published on November 23, 2021 in the journal Nature Communications.
Related Links:
Charité-Universitätsmedizin Berlin
Qiagen
Agilent Technologies
Illumina
Latest Molecular Diagnostics News
- 2-Hour Cancer Blood Test to Transform Tumor Detection
- Ultrasensitive Test Could Identify Earliest Molecular Signs of Metastatic Relapse in Breast Cancer Patients
- Automated High Throughput Immunoassay Test to Advance Neurodegenerative Clinical Research
- Blood Test Could Detect Proteins Linked to Alzheimer's Disease and Memory Loss
- Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear
- First-of-Its-Kind Blood Test Detects Over 50 Cancer Types
- Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk
- Single Cell RNA Sequencing Could Enable Non-Invasive Blood Disorder Diagnosis
- Blood Test Identifies HPV-Associated Head and Neck Cancers 10 Years Before Symptoms
- Giant DNA Elements Discovered in Mouth Could Impact Oral Health
- Simple Blood Test Spots Disease Through Metabolic Distortion
- Simple Blood Test Could Streamline Early Alzheimer's Detection
- Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer
- ELISA-Based Test Uses Gynecologic Fluids to Detect Endometrial Cancer
- Comprehensive Tumor Profiling Kit Decentralizes and Standardizes Oncology Testing
- Automated Syndromic Testing System Combines Unparalleled Throughput with Simple Workflow
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Novel Tool Uses Deep Learning for Precision Cancer Therapy
Nearly 50 new cancer therapies are approved each year, but selecting the right one for patients with highly individual tumor characteristics remains a major challenge. Physicians struggle to navigate the... Read more
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read morePathology
view channel
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
VedaBio Partners With Mammoth Biosciences to Expand CRISPR-Based Diagnostic Technologies
VedaBio (San Diego, CA, USA) has entered into a non-exclusive license agreement with Mammoth Biosciences (Brisbane, CA, USA) for the use of select CRISPR-based technologies in diagnostic applications.... Read more