We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Long-Term Storage Stability of Corticotropin Investigated

By LabMedica International staff writers
Posted on 20 Dec 2021
Image: The ARCHITECT i2000SR automated immunoassay instrument system (Photo courtesy of Abbott Laboratories)
Image: The ARCHITECT i2000SR automated immunoassay instrument system (Photo courtesy of Abbott Laboratories)
Corticotropin (adrenocorticotropic hormone, ACTH) is a 39-residue polypeptide tropic hormone secreted by the anterior pituitary gland following hypothalamic corticotropin-releasing hormone release. Corticotropin is notorious for its instability.

Cortisol regulates ACTH release via a negative feedback loop. Measurements of plasma ACTH are crucial for differential diagnosis of endocrine disorders including Cushing’s syndrome and adrenal insufficiency but can be complicated by both preanalytical and analytical factors.

Clinical Biochemists at Amsterdam University (Amsterdam, The Netherlands) and their colleagues investigated the long-term storage stability of corticotropin in ethylenediaminetetraacetic acid containing plasma. Plasma specimens were obtained from 20 healthy American subjects that were either neat or spiked with ACTH (22–1,866 pg/ml). Plasma specimens were also obtained from Dutch patients visiting the Amsterdam University Medical Centers (UMC, Amsterdam, The Netherlands), between 2012 and 2013 for various indications.

Individual specimens were assayed on the day of processing (month 0) and five times (at 1, 3, 9, 12, and 18 months) following storage at both −20 °C and −70 °C in five replicates each. Specimens were thawed once on the laboratory countertop at room temperature, mixed by gentle inversion and centrifuged at 3,000×g for 5 minutes Afterwards they were kept at room temperature and quickly analyzed. ACTH results were generated on the ARCHITECT i2000SR automated immunoassay instrument system (Abbott Laboratories, Abbott Park, IL, USA). The team also used a chemiluminescence immunoassay (CLIA) that uses two monoclonal antibodies of which the Liaison capture antibody that is coated to magnetic particles and the detection antibody is linked to an isoluminol derivative (Diasorin, Salugia, Italy).

The team reported that storing human plasma specimens for up to one and a half years at −20 °C or −70 °C had limited influence on the ACTH levels in these specimens measured by the ARCHITECT ACTH assay. In both neat and spiked specimens at the two storage conditions, ACTH levels remained relatively stable over time with only minimal changes in ACTH levels (<11%). Storing specimens for up to four or six years did significantly reduce detectable ACTH levels in native patient plasma specimens. After four years of storage at −20 °C, ACTH levels were 74.8%, whereas after six years of storage ACTH levels were only 46.2% of the original ACTH levels measured using the Liaison immunoassay.

The authors concluded that corticotropin levels are stable in plasma when stored at −20 °C for one and a half years using the Abbott assay, but with longer storage time a significant reduction in corticotropin levels can be expected. Once specimens are stored for future corticotropin measurements, one should consider storage time, storage temperature and assay differences. The study was originally published on October 13, 2021 in the journal Clinical Chemistry and Laboratory Medicine.

Related Links:
Amsterdam University
Amsterdam University Medical Centers
Abbott Laboratories
Diasorin


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
8-Channel Pipette
SAPPHIRE 20–300 µL

Channels

Molecular Diagnostics

view channel
Image: Neuron-derived extracellular vesicles carry many biomarker candidates for Alzheimer’s (S Chinnathambi et al., Brain Network Disorders (2025). doi.org/10.1016/j.bnd.2024.12.006)

Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis

Alzheimer’s disease is becoming increasingly common as global populations age, yet effective treatments for advanced stages remain limited. Early detection is therefore critical, but current diagnostic... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more