LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Beta-Lactamase Detection Reagent Rapidly Diagnoses Urinary ESBL-Producing Pathogens

By LabMedica International staff writers
Posted on 14 Dec 2021
Print article
Image: BD Phoenix automated identification and susceptibility testing system (Photo courtesy of Becton, Dickinson and Company)
Image: BD Phoenix automated identification and susceptibility testing system (Photo courtesy of Becton, Dickinson and Company)
The increasing prevalence of extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales is recognized as a significant health threat worldwide. In addition, long-term colonization by ESBL-producing Enterobacterales has recently been reported not only in patients undergoing antimicrobial therapy but also in healthy individuals.

As Enterobacterales are among the most common pathogenic bacteria causing urinary tract infection (UTI), the rapid spread of ESBL-producing Enterobacterales makes it difficult to select appropriate initial antimicrobial therapy in patients with UTI. Urine culture is the gold standard for confirming the causative organisms of UTI, it takes at least 48–72 hour to obtain the results of antimicrobial susceptibility tests.

Clinical Scientists at the Osaka General Medical Center (Osaka, Japan) conducted a prospective observational study from July 2019 to November 2019 in a tertiary care hospital in Japan. Patients were eligible if they underwent urine culture tests, and Gram-negative pathogens of at least one per field of view under a 1000× microscope were detected from their urine samples. The reference standard was ESBL-producing Enterobacterales isolated from urine culture and all urine samples were cultured.

Bacterial isolates were further identified by MALDI Biotyper (Bruker, Billerica, MA, USA). All antibiotic susceptibility tests, including those for ESBL production, were confirmed by a BD Phoenix automated identification and susceptibility testing system (Becton, Dickinson and Company, Franklin, NJ, USA). Each urine sample was centrifuged, and the pellet was mixed with Cica-beta reagent (Kanto Chemical, Tokyo, Japan). The test was considered positive when the enzymatic reaction turned from yellow to red or orange.

The investigators reported that 350 patients with Gram-negative bacteriuria were included in the study, and the Cica-beta test was performed directly on their urine samples. Among these 350 patients, 214 were diagnosed with UTI. Escherichia coli (n=223; 63.7%) was the most frequently isolated bacteria, followed by Klebsiella pneumoniae (n=56; 16.0%) and Pseudomonas aeruginosa (n=34; 9.7%). ESBL-producing pathogens were isolated from 79 samples (22.6%). In total 80 ESBL-producing pathogens were isolated during the study period. The Cica-beta test was positive in 65 (18.6%) samples; non-ESBL-producing pathogens were identified in two cases by culture. E. coli resistant to ampicillin, piperacillin and cefazoline was identified in one case, and Proteus mirabilis resistant to ampicillin and cefazoline was identified in the other case. In most cases, the results of the Cica-beta test were available on the day after the urine samples were collected, or sooner.

The authors concluded that the Cica-beta test appeared to be an efficient test for the detection of ESBL-producing pathogens in urine. As it can provide immediate information about ESBLs without complex interpretation, the Cica-beta test may represent a point-of-care test to predict causative pathogens and guide appropriate antibiotic therapy in patients with UTI. The study was published on December 1, 2021 in the International Journal of Infectious Diseases.

Related Links:
Osaka General Medical Center
Bruker
Becton, Dickinson and Company
Kanto Chemical


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.