LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Noninvasive Device Can ‘Read the Blood Through the Skin’ to Measure Hemoglobin in Real-Time

By LabMedica International staff writers
Posted on 02 Nov 2021
Print article
Image: From left, Alexandra Hansard, Sanjay Gokhale and George Alexandrakis (Photo courtesy of The University of Texas at Arlington)
Image: From left, Alexandra Hansard, Sanjay Gokhale and George Alexandrakis (Photo courtesy of The University of Texas at Arlington)

A team of bioengineers and scientists has developed a new noninvasive technology that may help real-time monitoring of key blood parameters, such as hemoglobin, especially in Black patients.

The wearable device developed by researchers at The University of Texas at Arlington (Arlington, TX, USA) in collaboration with Shani Biotechnologies, LLC, could reduce racial disparities in blood measurements. Most currently available methods for monitoring hemoglobin require blood samples and expensive equipment. The available noninvasive spectroscopic methods have a high degree of variability and often are inaccurate in people of color due to differences in skin melanin. There is a significant unmet need for a reliable, noninvasive device to estimate hemoglobin, irrespective of skin color.

The researchers came up with the idea of developing a wearable device, such as a watch or a monitor, “that would read the blood through the skin.” The new device relies on the spectroscopic properties of hemoglobin in the blue-green light spectra, as opposed to the red-infrared spectra currently used in similar devices. The device is easy to use, utilizing a probe that is placed on the skin and measures reflected light from the skin. The team evaluated the novel device in more than 30 participants. They compared the hemoglobin values measured by the device to those measured by currently available point-of-care devices, as well as through standard blood tests. Preliminary results suggest the device can estimate hemoglobin with better accuracy and consistency than currently available comparable methods.

“We are planning larger studies in a variety of patient populations to advance the clinical development of the device,” said Vinoop Daggubati, MD, CEO of Shani Biotechnologies. “The technology has massive potential in health care settings, remote monitoring and embodiment into wearables. We are committed to closing the racial disparity in these diagnostic modalities to provide better care for African Americans, Hispanics and people of color. Our technology is a steppingstone toward achieving that goal.”

Related Links:
The University of Texas at Arlington 

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.