LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Electronic Nose Sensor Accurately Detects Ovarian, Pancreatic Cancers

By LabMedica International staff writers
Posted on 15 Jul 2021
Image: Nanoanalysis of plasma volatile organic compounds used novel DNA-decorated carbon nanotube vapor sensors to noninvasively distinguish ovarian and pancreatic cancer from benign and control samples (Photo courtesy of the University of Pennsylvania)
Image: Nanoanalysis of plasma volatile organic compounds used novel DNA-decorated carbon nanotube vapor sensors to noninvasively distinguish ovarian and pancreatic cancer from benign and control samples (Photo courtesy of the University of Pennsylvania)
Ovarian cancer is a cancer that forms in or on an ovary. It results in abnormal cells that have the ability to invade or spread to other parts of the body. When this process begins, there may be no or only vague symptoms. Pancreatic cancer arises when cells in the pancreas, a glandular organ behind the stomach, begin to multiply out of control and form a mass.

All cells release volatile organic compounds (VOCs) which emanate from body fluids. Electronic noses essentially consist of head space sampling, a chemical sensor array, and pattern recognition modules, to generate signal pattern that are used for characterizing odors. The sample delivery system enables the generation of the headspace (VOCs) of a sample, which is the fraction analyzed.

Biophysicists at the Perelman School of Medicine at the University of Pennsylvania (Philadelphia, PA, USA) demonstrated that VOCs released from tissue and plasma from ovarian cancer patients are distinct from those released from samples of patients with benign tumors and controls. They created a sensitive and specific, high-throughput screening test for cancer based on analysis of VOCs using novel nanosensors, first targeting cancers with limited clinical screening modalities. In this study they used these sensors to distinguish vapor characteristics in plasma samples from patients with ovarian and pancreatic cancer from benign specimens and controls.

The scientists assessed the ability of the electronic-nose tool to distinguish vapor characteristics of plasma samples from 93 individuals, including 20 women with ovarian cancer, 20 women with benign ovarian tumors and 20 age-matched, cancer-free women, in addition to 13 patients with pancreatic cancer, 10 patients with benign pancreatic disease, and 10 age- and sex-matched controls. They analyzed the samples using a 10-channel nanoelectronic olfaction (“e-nose”) system based on single-stranded DNA-decorated single-walled carbon nanotube (DNA-NT) vapor sensors.

The team reported that compared to their corresponding benign and control specimens, the DNA-NT sensor array was able to discriminate the VOCs from ovarian cancer with 95% accuracy and pancreatic cancer with 90% accuracy. Plasma samples from patients with early-stage ovarian and pancreatic cancers were correctly identified by the algorithms.

Erica L. Carpenter, PhD, an assistant professor and a study author, said, “We have been working on the issue of early detection by liquid biopsy for quite some time, and although we have made inroads with current approaches, they have not been sufficiently sensitive. This study was an interesting opportunity because it is a whole new way of trying to detect an early tumor, and the hope is that it will yield additional information.”

The authors concluded that nano-enabled DNA coated vapor sensors were able to distinguish the VOC pattern between cancer, benign and control samples in both ovarian and pancreatic cancer. The results provide strong evidence that ovarian and pancreatic cancer alters the VOC pattern emanating from plasma and provide optimism that a diagnostic approach based on vapor detection of ovarian and pancreatic cancer is achievable. The study was presented at the ASCO Annual Meeting (virtual meeting) held June 4-8, 2021.

Related Links:
Perelman School of Medicine at the University of Pennsylvania

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay

Channels

Molecular Diagnostics

view channel
Image: Scout\'s patented molecular technology delivers results matching high-complexity PCR 99% of the time (Photo courtesy of Scout Health)

STI Molecular Test Delivers Rapid POC Results for Treatment Guidance

An affordable, rapid molecular diagnostic for sexually transmitted infections (STIs) has the potential to be globally relevant, particularly in resource-limited settings where rapid, point-of-care results... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
GLOBE SCIENTIFIC, LLC