Monocyte Distribution Width Evaluated as a Sepsis Indicator
By LabMedica International staff writers Posted on 01 Jul 2021 |

Image: The DxH 900 hematology analyzer enables the high-volume laboratory to achieve RBC, PLT and WBC differentials through near native-state cellular characterization (Photo courtesy of Beckman Coulter)
Most current automated hematology analyzers have enhanced cell counting functions including the addition of new cell types such as nucleated red blood cells or immature granulocytes, making it possible to obtain a precise quantification of peripheral blood cells in pathological conditions.
Cellular analysis technologies are able to explore qualitative aspects of leukocytes (white blood cells, WBCs) and provide numerous additional parameters, indicating functional information for each leukocyte type, the so-called cell population data (CPD). Since sepsis represents a life-threatening condition, without characteristic signs or symptoms, early detection for timely and appropriate management is crucial to patient survival.
Medical Laboratorians at the University-Hospital of Padova (Padova, Italy) evaluated the diagnostic accuracy and prognostication of monocyte distribution width (MDW) in sepsis for patients admitted to Intensive Care Units (ICU). The scientists conducted a prospective observational study during the hospitalization of 506 adult patients admitted to the ICU. MDW was evaluated in 2,367 consecutive samples received for routine complete blood counts (CBC) performed once a day and every day during the study. Sepsis was diagnosed according to Sepsis-3 criteria and patients enrolled were classified in the following groups: no sepsis, sepsis, and septic shock. There were 346 men and 160 women, aged from 18 to 89 years (median 68 years) in the study.
Complete blood count (CBC) and MDW were analyzed using the UniCel DxH 900 (Beckman Coulter, Inc, Brea, CA, USA). At the same time, 2,128 samples were determined for C-reactive protein (CRP) and 2,035 samples for procalcitonin (PCT), as part of the clinical examination. Serum CRP was determined using a nephelometric/turbidimetric technique of the Dimension Vista System (Siemens Healthcare GmbH, Milan, Italy). PCT was determined using chemiluminescence immunoassay (CLIA) technology with paramagnetic microparticle solid phase of the LIAISONs BRAHMS PCTs II GEN System (DiaSorin, Saluggia, Italy).
The investigators reported that MDW values were significantly higher in patients with sepsis or septic shock in comparison to those within the no sepsis group: median 26.23, 28.97, and 21.99 respectively. ROC analysis demonstrated that AUC is 0.785 with a sensitivity of 66.88% and specificity of 77.79% at a cut-off point of 24.63. In patients that developed an ICU-acquired sepsis MDW showed an increase from 21.33 to 29.19. MDW increase was not affected by the etiology of sepsis, even in patients with COVID-19. In sepsis survivors a decrease of MDW values were found from the first time to the end of their stay: median from 29.14 to 25.67.
The authors concluded that MDW, a parameter that reflects a change in circulating monocytes volume in response to pro-inflammatory signals from infectious organisms referred to as pathogen-associated molecular patterns, can have potential clinical applications for early sepsis detection in hospital and ICU settings. The study was published on the July, 2021 issue of the journal Clinical Chemistry and Laboratory Medicine.
Related Links:
University-Hospital of Padova
Beckman Coulter
Siemens Healthcare
DiaSorin
Cellular analysis technologies are able to explore qualitative aspects of leukocytes (white blood cells, WBCs) and provide numerous additional parameters, indicating functional information for each leukocyte type, the so-called cell population data (CPD). Since sepsis represents a life-threatening condition, without characteristic signs or symptoms, early detection for timely and appropriate management is crucial to patient survival.
Medical Laboratorians at the University-Hospital of Padova (Padova, Italy) evaluated the diagnostic accuracy and prognostication of monocyte distribution width (MDW) in sepsis for patients admitted to Intensive Care Units (ICU). The scientists conducted a prospective observational study during the hospitalization of 506 adult patients admitted to the ICU. MDW was evaluated in 2,367 consecutive samples received for routine complete blood counts (CBC) performed once a day and every day during the study. Sepsis was diagnosed according to Sepsis-3 criteria and patients enrolled were classified in the following groups: no sepsis, sepsis, and septic shock. There were 346 men and 160 women, aged from 18 to 89 years (median 68 years) in the study.
Complete blood count (CBC) and MDW were analyzed using the UniCel DxH 900 (Beckman Coulter, Inc, Brea, CA, USA). At the same time, 2,128 samples were determined for C-reactive protein (CRP) and 2,035 samples for procalcitonin (PCT), as part of the clinical examination. Serum CRP was determined using a nephelometric/turbidimetric technique of the Dimension Vista System (Siemens Healthcare GmbH, Milan, Italy). PCT was determined using chemiluminescence immunoassay (CLIA) technology with paramagnetic microparticle solid phase of the LIAISONs BRAHMS PCTs II GEN System (DiaSorin, Saluggia, Italy).
The investigators reported that MDW values were significantly higher in patients with sepsis or septic shock in comparison to those within the no sepsis group: median 26.23, 28.97, and 21.99 respectively. ROC analysis demonstrated that AUC is 0.785 with a sensitivity of 66.88% and specificity of 77.79% at a cut-off point of 24.63. In patients that developed an ICU-acquired sepsis MDW showed an increase from 21.33 to 29.19. MDW increase was not affected by the etiology of sepsis, even in patients with COVID-19. In sepsis survivors a decrease of MDW values were found from the first time to the end of their stay: median from 29.14 to 25.67.
The authors concluded that MDW, a parameter that reflects a change in circulating monocytes volume in response to pro-inflammatory signals from infectious organisms referred to as pathogen-associated molecular patterns, can have potential clinical applications for early sepsis detection in hospital and ICU settings. The study was published on the July, 2021 issue of the journal Clinical Chemistry and Laboratory Medicine.
Related Links:
University-Hospital of Padova
Beckman Coulter
Siemens Healthcare
DiaSorin
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more