We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Diabetic Biomarkers Concordance Compared in South African Blacks

By LabMedica International staff writers
Posted on 28 Jun 2021
Image: The D-10 Hemoglobin Testing System provides comprehensive, automated hemoglobin testing in a compact footprint, combining HbA1c and HbA2/F/A1c testing on a single platform (Photo courtesy of Bio-Rad)
Image: The D-10 Hemoglobin Testing System provides comprehensive, automated hemoglobin testing in a compact footprint, combining HbA1c and HbA2/F/A1c testing on a single platform (Photo courtesy of Bio-Rad)
Sub-Saharan Africa is projected to experience a significant increase in the prevalence of diabetes mellitus by in the near future and accurate, comparable prevalence estimates will be essential to planning and monitoring by public health authorities.

Diagnosis based on glycated hemoglobin (HbA1c) is attractive because it provides an integrated assessment of glycemic status over the preceding three months and has low analytical variability, but the extent to which this single threshold may be adopted in all sub-Saharan African populations is questionable. Existing data suggest that in individuals of African descent, HbA1c may be higher for any given degree of glycaemia than in individuals of European descent.

A large international team of medical scientists led by those at the University of the Witwatersrand (Johannesburg, South Africa) included in a study 765 black individuals aged 40–70 years and with no history of diabetes. The team investigated concordance between hemoglobin A1c (HbA1c)-defined diabetes and fasting plasma glucose (FPG)-defined diabetes in a black South African population with a high prevalence of obesity.

Capillary blood samples were tested for hemoglobin at point of collection using the Haemocue Hb 201+analyser (Haemocue, Ängelholm, Sweden). Whole blood was analyzed for HbA1c using high-performance liquid chromatography on the Bio-Rad D-10 (Bio-Rad Laboratories, Hercules, CA, USA) with a reportable range of 3.8%–18.5%. Plasma was analyzed for glucose using colorimetric methods on the Randox Plus clinical chemistry analyzer (Randox, Crumlin, UK) with a range of 0.36–35 mmol/L. Serum insulin assays were performed on the Immulite 1000 chemistry analysis system (Siemens Healthineers, Erlangen, Germany), using a solid-phase, enzyme-labeled chemiluminescent immunometric assay (range 2–300 μIU/mL).

The investigators reported that the prevalence of HbA1c-defined diabetes was four times the prevalence of FPG-defined diabetes (17.5% versus 4.2%). Classification was discordant in 15.7% of participants, with 111 individuals (14.5%) having HbA1c-only diabetes. Median body mass index, waist and hip circumference, waist-to-hip ratio, subcutaneous adipose tissue and Homoeostatic Model Assessment of Insulin Resistance (HOMA-IR) in participants with HbA1c-only diabetes were similar to those in participants who were normoglycemic by both biomarkers and significantly lower than in participants with diabetes by both biomarkers. HOMA-IR and fat distribution explained additional HbA1c variance beyond glucose and age only in women.

The authors concluded that concordance was poor between HbA1c and FPG in diagnosis of diabetes in black South Africans, and participants with HbA1c-only diabetes phenotypically resembled normoglycemic participants. Further work is necessary to determine which of these parameters better predicts diabetes-related morbidities in this population and whether a population-specific HbA1c threshold is necessary. The study was published on June 17, 2021 in the journal BMJ OPEN.

Related Links:
University of the Witwatersrand
Haemocue
Bio-Rad Laboratories
Randox
Siemens Healthineers


New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Collection and Transport System
PurSafe Plus®
Rapid Molecular Testing Device
FlashDetect Flash10
Hemodynamic System Monitor
OptoMonitor

Channels

Molecular Diagnostics

view channel
Image: Size assessment of patient-derived material from various tauopathies (Aragonès Pedrola J. et al., PNAS (2025); DOI: 10.1073/pnas.2502847122)

First Direct Measurement of Dementia-Linked Proteins to Enable Early Alzheimer’s Detection

The disease process in Alzheimer’s begins long before memory loss or cognitive decline becomes apparent. During this silent phase, misfolded proteins gradually form amyloid fibrils, which accumulate in... Read more

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
GLOBE SCIENTIFIC, LLC