RPA-LF Assay Evaluated for Cutaneous Leishmaniasis in Colombia
|
By LabMedica International staff writers Posted on 17 May 2021 |

Image: Results of the Recombinase Polymerase Amplification-Lateral Flow (RPA-LF) assay for cutaneous leishmaniasis (Photo courtesy of University of Texas Medical Branch)
Cutaneous leishmaniasis (CL) is a recognized public health challenge in the Americas, with an average of 55,000 cases per year between 2001 and 2018 in 17 countries of the region. Most cases (79.4%) have been acquired in and continue to occur in rural areas.
Currently available diagnostic methods for CL have several limitations. Light microscopic analysis of smears obtained from cutaneous lesions is the most commonly used diagnostic method for CL because of its low cost, yet its sensitivity varies widely depending on the experience and skill of the operator. In addition, sensitivity of microscopy is diminished in lesions of longer duration in chronic lesions with their notorious low parasite burden.
A team of tropical medicine specialists from the University of Texas Medical Branch (Galveston, TX, USA) and the Universidad Icesi (Cali, Colombia) conducted a cross-sectional study of diagnostic test performance between January 2018 and July 2019. There were 118 participants ≥2 years of age, with ulcerated skin lesions of more than two weeks’ duration were eligible and enrolled consecutively either in their residence (in rural Tumaco) by community health workers, or when seeking care at the primary health facility in urban Tumaco or the reference center laboratory in Cali.
The team utilized a composite “gold standard” based on microscopy of lesion smear, culture, histopathology of biopsy and qPCR18S as a reference. Minimally invasive swab and FTA filter paper samples were obtained by community health workers and highly trained technicians from ulcerated lesions. The investigators evaluated the diagnostic test performance of Isothermal Recombinase Polymerase Amplification (RPA) targeting Leishmania kinetoplast DNA, coupled with a lateral flow (LF) immunochromatographic strip, in a field setting and a laboratory reference center.
The scientists reported that the sensitivity and specificity of RPA-LF in the reference lab scenario were 87% (95%CI 74–94) and 86% (95%CI 74–97), respectively. In the field scenario, the sensitivity was 75% (95%CI 65–84) and specificity 89% (95%CI 78–99). Positive likelihood ratios in both scenarios were higher than six while negative likelihood ratios ranged to 0.2–0.3 supporting the usefulness of RPA-LF to rule-in and potentially to rule-out infection.
The authors concluded that RPA-LF is a valid, efficacious test to diagnose CL that could replace or complement microscopy in rural areas. Its combination with non-invasive sampling and low complexity requirements for processing and interpreting results position this test as an achievable alternative for diagnosis of CL at points of care in Colombia. The study was published on April 28, 2021 in the journal PLOS Neglected Tropical Diseases.
Related Links:
University of Texas Medical Branch
Universidad Icesi
Currently available diagnostic methods for CL have several limitations. Light microscopic analysis of smears obtained from cutaneous lesions is the most commonly used diagnostic method for CL because of its low cost, yet its sensitivity varies widely depending on the experience and skill of the operator. In addition, sensitivity of microscopy is diminished in lesions of longer duration in chronic lesions with their notorious low parasite burden.
A team of tropical medicine specialists from the University of Texas Medical Branch (Galveston, TX, USA) and the Universidad Icesi (Cali, Colombia) conducted a cross-sectional study of diagnostic test performance between January 2018 and July 2019. There were 118 participants ≥2 years of age, with ulcerated skin lesions of more than two weeks’ duration were eligible and enrolled consecutively either in their residence (in rural Tumaco) by community health workers, or when seeking care at the primary health facility in urban Tumaco or the reference center laboratory in Cali.
The team utilized a composite “gold standard” based on microscopy of lesion smear, culture, histopathology of biopsy and qPCR18S as a reference. Minimally invasive swab and FTA filter paper samples were obtained by community health workers and highly trained technicians from ulcerated lesions. The investigators evaluated the diagnostic test performance of Isothermal Recombinase Polymerase Amplification (RPA) targeting Leishmania kinetoplast DNA, coupled with a lateral flow (LF) immunochromatographic strip, in a field setting and a laboratory reference center.
The scientists reported that the sensitivity and specificity of RPA-LF in the reference lab scenario were 87% (95%CI 74–94) and 86% (95%CI 74–97), respectively. In the field scenario, the sensitivity was 75% (95%CI 65–84) and specificity 89% (95%CI 78–99). Positive likelihood ratios in both scenarios were higher than six while negative likelihood ratios ranged to 0.2–0.3 supporting the usefulness of RPA-LF to rule-in and potentially to rule-out infection.
The authors concluded that RPA-LF is a valid, efficacious test to diagnose CL that could replace or complement microscopy in rural areas. Its combination with non-invasive sampling and low complexity requirements for processing and interpreting results position this test as an achievable alternative for diagnosis of CL at points of care in Colombia. The study was published on April 28, 2021 in the journal PLOS Neglected Tropical Diseases.
Related Links:
University of Texas Medical Branch
Universidad Icesi
Latest Microbiology News
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance
- Early Detection of Gut Microbiota Metabolite Linked to Atherosclerosis Could Revolutionize Diagnosis
- Viral Load Tests Can Help Predict Mpox Severity
- Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Blood Test Could Assess Concussion Severity in Teenagers with TBI
Diagnosing and monitoring concussion in adolescents is challenging because symptoms can persist for weeks and vary widely between patients. The need for objective tools is especially urgent for teen girls,... Read more
Simultaneous Analysis of Three Biomarker Tests Detects Elevated Heart Disease Risk Earlier
Accurately identifying individuals at high risk of heart attack remains a major challenge, especially when traditional indicators like cholesterol and blood pressure appear normal. Elevated levels of three... Read moreHematology
view channel
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Roche and Freenome Collaborate to Develop Cancer Screening Tests
Roche (Basel, Switzerland) and Freenome (Brisbane, CA, USA have entered into a strategic collaboration to commercialize Freenome's cancer screening technology in international markets.... Read more





 assay.jpg)


