Immunoassay Developed for Quantitative Detection of Serum Interleukin‐6
|
By LabMedica International staff writers Posted on 07 Apr 2021 |

Image: The quantum dot (QD)‐based fluorescence lateral flow immunoassay (LFIA) strip can rapidly and accurately detect IL‐6 levels at different concentrations (Photo courtesy of University of South China)
Interleukin‐6 (IL‐6) is a multifunctional protein and is primarily produced by macrophages, monocytes, fibroblasts, and T lymphocytes, and plays important roles in immune regulation, hematopoiesis, inflammation, and tumorigenesis.
IL‐6 has shown the highest value in the diagnosis of sepsis compared with procalcitonin (PCT) and C‐reactive protein (CRP), which are also important biomarkers of infection. Traditional IL‐6 detection methods include chemiluminescence immunoassays (CLIA), enzyme‐linked immunosorbent assays (ELISA) and electrochemiluminescence immunoassays (ECLIA).
Medical Scientists at the Second Affiliated Hospital of University of South China (Hengyang, China) developed a quantum dot (QD)‐based fluorescence lateral flow immunoassay (LFIA) strip that can rapidly and accurately detect IL‐6 levels. The QD‐based LFIA strips were fabricated by conjugating cadmium selenide/zinc sulfide (CdSe/ZnS) QDs to the IL‐6 antibody. The strips were made of nitrocellulose (NC) membranes, semi‐rigid polyvinylchloride (PVC) sheets, and polyester fiber. The IL‐6 CLIA kits were from Beckman Coulter (Pasadena, CA, USA).
The fluorescence intensity of the test (T) line and the control (C) line on the strip were detected using the self‐designed KF‐Q001‐A fluorescence immunoassay analyzer (Kingfocus Biomedical Engineering Co., Ltd, Shenzhen City, China). The QDs and antibodies were dispensed onto the strip using a piece of three‐dimensional gold‐spraying equipment. IL‐6 CLIA detection was performed on the Beckman Coulter Dxl800 instrument. A total of 200 human serum samples were obtained from a local hospital, The IL‐6 concentrations of these samples ranged from 0 to 580.42 ng/mL. The samples were detected using the strip and the Beckman IL‐6 CLIA kit within two hours of each other.
The investigators reported that the test strip's linear range was 10–4,000 pg/mL, with a linear correlation coefficient of R2 ≥ 0.959. The sensitivity of the test strip was 1.995 pg/mL. The recovery rate was 95.72%–102.63%, indicating satisfying accuracy. The coefficient of variation (CV) of the intra‐assay was 2.148%–3.903%, while the inter‐assay was 2.412%–5.293%, verifying the strip's high precision. The cross‐reaction rates with various interleukins (IL‐1α, IL‐1β, IL‐2, IL‐4, and IL‐8) and interferon‐γ (IFN‐γ) were all less than 0.1%.
The authors concluded that they had successfully established a QD‐based LFIA method for rapid and accurate detection of human serum IL‐6, providing a more simple, robust, and economic point-of-care technology (POCT) for IL‐6 quantification, which is of great value for the early detection and treatment of sepsis and related disorders. The study was published on March 24, 2021 in the Journal of Clinical Laboratory Analysis.
Related Links:
Second Affiliated Hospital of University of South China
Beckman Coulter
Kingfocus Biomedical Engineering Co., Ltd
IL‐6 has shown the highest value in the diagnosis of sepsis compared with procalcitonin (PCT) and C‐reactive protein (CRP), which are also important biomarkers of infection. Traditional IL‐6 detection methods include chemiluminescence immunoassays (CLIA), enzyme‐linked immunosorbent assays (ELISA) and electrochemiluminescence immunoassays (ECLIA).
Medical Scientists at the Second Affiliated Hospital of University of South China (Hengyang, China) developed a quantum dot (QD)‐based fluorescence lateral flow immunoassay (LFIA) strip that can rapidly and accurately detect IL‐6 levels. The QD‐based LFIA strips were fabricated by conjugating cadmium selenide/zinc sulfide (CdSe/ZnS) QDs to the IL‐6 antibody. The strips were made of nitrocellulose (NC) membranes, semi‐rigid polyvinylchloride (PVC) sheets, and polyester fiber. The IL‐6 CLIA kits were from Beckman Coulter (Pasadena, CA, USA).
The fluorescence intensity of the test (T) line and the control (C) line on the strip were detected using the self‐designed KF‐Q001‐A fluorescence immunoassay analyzer (Kingfocus Biomedical Engineering Co., Ltd, Shenzhen City, China). The QDs and antibodies were dispensed onto the strip using a piece of three‐dimensional gold‐spraying equipment. IL‐6 CLIA detection was performed on the Beckman Coulter Dxl800 instrument. A total of 200 human serum samples were obtained from a local hospital, The IL‐6 concentrations of these samples ranged from 0 to 580.42 ng/mL. The samples were detected using the strip and the Beckman IL‐6 CLIA kit within two hours of each other.
The investigators reported that the test strip's linear range was 10–4,000 pg/mL, with a linear correlation coefficient of R2 ≥ 0.959. The sensitivity of the test strip was 1.995 pg/mL. The recovery rate was 95.72%–102.63%, indicating satisfying accuracy. The coefficient of variation (CV) of the intra‐assay was 2.148%–3.903%, while the inter‐assay was 2.412%–5.293%, verifying the strip's high precision. The cross‐reaction rates with various interleukins (IL‐1α, IL‐1β, IL‐2, IL‐4, and IL‐8) and interferon‐γ (IFN‐γ) were all less than 0.1%.
The authors concluded that they had successfully established a QD‐based LFIA method for rapid and accurate detection of human serum IL‐6, providing a more simple, robust, and economic point-of-care technology (POCT) for IL‐6 quantification, which is of great value for the early detection and treatment of sepsis and related disorders. The study was published on March 24, 2021 in the Journal of Clinical Laboratory Analysis.
Related Links:
Second Affiliated Hospital of University of South China
Beckman Coulter
Kingfocus Biomedical Engineering Co., Ltd
Latest Immunology News
- Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
- Blood Test Could Detect Adverse Immunotherapy Effects
- Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy
- New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
- Gene Signature Test Predicts Response to Key Breast Cancer Treatment
- Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
- Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
- Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
- Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
- Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
- Luminescent Probe Measures Immune Cell Activity in Real Time
- Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
- Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients
- Companion Diagnostic Test for CRC Patients Identifies Eligible Treatment Population
- Novel Tool Uses Deep Learning for Precision Cancer Therapy
- Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Channels
Clinical Chemistry
view channel
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read more
POC Breath Diagnostic System to Detect Pneumonia-Causing Pathogens
Pseudomonas aeruginosa is a major cause of hospital-acquired and ventilator-associated pneumonia, particularly in lung transplant recipients and patients with structural lung disease. Its ability to form... Read moreMolecular Diagnostics
view channel
World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device
Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more
Rapid Diagnostic Breakthrough Simultaneously Detects Resistance and Virulence in Klebsiella Pneumoniae
Antibiotic resistance is a steadily escalating threat to global healthcare, making common infections harder to treat and increasing the risk of severe complications. One of the most concerning pathogens... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreTechnology
view channel
Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
Glioblastoma is one of the most aggressive and fatal brain cancers, with most patients surviving less than two years after diagnosis. Treatment is particularly challenging because the tumor infiltrates... Read more
Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease that is notoriously difficult to diagnose in its early stages. Early symptoms often overlap with other neurological... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more








