Performance of Five Lipoprotein(a) Immunoassays Evaluated
By LabMedica International staff writers Posted on 06 Apr 2021 |

Image: The Diazyme Lipoprotein A assay kit is for the in vitro quantitative determination of Lp(a) concentration in human serum or plasma on Clinical Chemistry Systems (Photo courtesy of Diazyme)
Increased serum Lipoprotein(a) [Lp(a)] is considered an independent, inherited risk factor for atherosclerotic cardiovascular disease (ASCVD), including myocardial infarction and stroke. This risk is believed to be due to pro-atherogenic, pro-inflammatory, and pro-thrombotic properties of the Lp(a) particle.
Lp(a) can be measured using a variety of methods, including enzyme linked immunosorbent assays (ELISA), latex-agglutination, immunoturbidimetry/immunonephelometry, electrophoresis, and immunofixation electrophoresis (IFE). A confounding factor is that Lp(a) can be reported in either mass units (mg/dL of the total Lp(a) particle) or molar concentration of particles (nmol/L).
Medical Laboratorians at the ARUP Institute of Clinical and Experimental Pathology (Salt Lake City, UT, USA) and their colleagues used 80 residual serum samples, and specimens from 120 self-reported healthy subjects (61 females/59 males) were also tested in a study. The aim of the study was to evaluate performance characteristic of five different Lp(a) assays using the cobas c501 analyzer (Roche Diagnostics, Indianapolis, IN, USA).
The five assay for Lp(a) used were from: Diazyme (Poway, CA, USA), Kamiya Biomedical Company (Seattle, WA, USA), MedTest Dx (Canton, MI, USA), Randox Laboratories (Crumlin, UK) and Roche Diagnostics, configured to mg/dL units. Assays from Diazyme and Kamiya were also configured using nmol/L units in separate studies. Studies included sensitivity, imprecision, linearity, method comparison, and evaluation of healthy subjects. Imprecision (intra-day, 20 replicates; inter-day, duplicates twice daily for five days) and linearity were evaluated using patient pools. Linearity assessed a minimum of five patient splits spanning the analytical measurement range (AMR).
The scientists reported that all methods met manufacturer claims regarding sensitivity: observed (manufacturer claim): Diazyme, 0.7 mg/dL (1.3 mg/dL); Kamiya, 1.2 mg/dL (5.0 mg/dL); MedTest, 0.2 mg/dL (1.3 mg/dL); Randox, 0.7 mg/dL (3.0 mg/dL); Roche, 0.3 mg/dL (4.0 mg/dL). Lp(a) assays also demonstrated acceptable imprecision and met manufacturers’ claims, with CVs less than 6% in all cases. Imprecision studies demonstrated %CVs ranging from 2.5 – 5.2% for the low pool (average concentration from 7.3 – 12.4 mg/dL); high pool %CVs ranged from 0.8 – 3.0% (average concentrations from (31.5 – 50.2 mg/dL). Linearity was confirmed for all assays. Variation in accuracy was observed when comparing results to an all method average. Lp(s) results were higher in females versus males in self-reported healthy subjects.
The authors concluded that all assays performed according to manufacturer described performance characteristics, although differences were observed across Lp(a) assays tested when compared to an all method average. The study was published on March 24, 2021 in the journal Practical Laboratory Medicine.
Related Links:
ARUP Institute of Clinical and Experimental Pathology
Roche Diagnostics
Diazyme
Kamiya Biomedical Company
MedTest Dx
Randox Laboratories
Lp(a) can be measured using a variety of methods, including enzyme linked immunosorbent assays (ELISA), latex-agglutination, immunoturbidimetry/immunonephelometry, electrophoresis, and immunofixation electrophoresis (IFE). A confounding factor is that Lp(a) can be reported in either mass units (mg/dL of the total Lp(a) particle) or molar concentration of particles (nmol/L).
Medical Laboratorians at the ARUP Institute of Clinical and Experimental Pathology (Salt Lake City, UT, USA) and their colleagues used 80 residual serum samples, and specimens from 120 self-reported healthy subjects (61 females/59 males) were also tested in a study. The aim of the study was to evaluate performance characteristic of five different Lp(a) assays using the cobas c501 analyzer (Roche Diagnostics, Indianapolis, IN, USA).
The five assay for Lp(a) used were from: Diazyme (Poway, CA, USA), Kamiya Biomedical Company (Seattle, WA, USA), MedTest Dx (Canton, MI, USA), Randox Laboratories (Crumlin, UK) and Roche Diagnostics, configured to mg/dL units. Assays from Diazyme and Kamiya were also configured using nmol/L units in separate studies. Studies included sensitivity, imprecision, linearity, method comparison, and evaluation of healthy subjects. Imprecision (intra-day, 20 replicates; inter-day, duplicates twice daily for five days) and linearity were evaluated using patient pools. Linearity assessed a minimum of five patient splits spanning the analytical measurement range (AMR).
The scientists reported that all methods met manufacturer claims regarding sensitivity: observed (manufacturer claim): Diazyme, 0.7 mg/dL (1.3 mg/dL); Kamiya, 1.2 mg/dL (5.0 mg/dL); MedTest, 0.2 mg/dL (1.3 mg/dL); Randox, 0.7 mg/dL (3.0 mg/dL); Roche, 0.3 mg/dL (4.0 mg/dL). Lp(a) assays also demonstrated acceptable imprecision and met manufacturers’ claims, with CVs less than 6% in all cases. Imprecision studies demonstrated %CVs ranging from 2.5 – 5.2% for the low pool (average concentration from 7.3 – 12.4 mg/dL); high pool %CVs ranged from 0.8 – 3.0% (average concentrations from (31.5 – 50.2 mg/dL). Linearity was confirmed for all assays. Variation in accuracy was observed when comparing results to an all method average. Lp(s) results were higher in females versus males in self-reported healthy subjects.
The authors concluded that all assays performed according to manufacturer described performance characteristics, although differences were observed across Lp(a) assays tested when compared to an all method average. The study was published on March 24, 2021 in the journal Practical Laboratory Medicine.
Related Links:
ARUP Institute of Clinical and Experimental Pathology
Roche Diagnostics
Diazyme
Kamiya Biomedical Company
MedTest Dx
Randox Laboratories
Latest Immunology News
- Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
- Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
Channels
Clinical Chemistry
view channel
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Genetic-Based Tool Predicts Survival Outcomes of Pancreatic Cancer Patients
A tumor marker is a substance found in the body that may signal the presence of cancer. These substances, which can include proteins, genes, molecules, or other biological compounds, are either produced... Read more
Urine Test Diagnoses Early-Stage Prostate Cancer
Prostate cancer is one of the leading causes of death among men worldwide. A major challenge in diagnosing the disease is the absence of reliable biomarkers that can detect early-stage tumors.... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreTechnology
view channel
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more