Childrens’ Urinary MicroRNAs Predict Future Development of Heart or Kidney Diseases
|
By LabMedica International staff writers Posted on 08 Mar 2021 |

Image: Exosomes are 30-150 nanometer extracellular vesicles containing various cargoes such as RNA and proteins (Photo courtesy of Wikimedia Commons)
A panel of microRNAs isolated from the urine of young children was shown to be able to predict the likelihood that a child would develop heart or kidney disease later in life.
MicroRNAs (miRNAs) are short, non-coding RNAs of approximately 20 nucleotides that act as post-transcriptional regulators by modifying target gene expression. Urinary miRNAs are promising biomarkers of subclinical kidney damage or dysfunction because they reflect kidney signaling and histological changes at the molecular level, enabling early detection of chronic kidney disease or progression of acute kidney injury. Urinary miRNAs are also readily obtained and are stable in stored samples.
Exosomes contain the major fraction of miRNA in urine and consequently are an ideal target to probe for molecular biomarkers of kidney diseases. Exosomes are lipid-enclosed extracellular vesicles measuring 30–150 nanometers in diameter that are released by most cells in the body and play an important role in intercellular communication by carrying bioactive molecules (soluble proteins and nucleic acids such as miRNAs) to a target cell. Exosomes in urine are primarily released from renal epithelial cells derived from renal tubular structures and hold promise as one component of a noninvasive liquid biopsy for detecting molecular changes in distinct nephron regions even in the absence of disease. Thus, the study of miRNA expression in exosomes (exo-miR) presents an opportunity in biomarker discovery for blood pressure (BP) regulation and altered renal signaling by identifying new diagnostic biomarkers and therapeutic targets.
In this light, investigators at the Mount Sinai School of Medicine (New York, NY, USA) sought to understand the relationship between urinary exo-miR expression and children's BP and estimated glomerular filtration rate (eGFR) as well as urinary sodium and potassium levels as correlates of heart and kidney health.
For this study, the investigators extracted exo-miRs from urine samples obtained from 88 healthy Mexican children aged four to six years. The study was conducted in Mexico, since children there are considered to be at much higher risk than American children for many heart and kidney problems. Differential centrifugation of spot urines enabled isolation and detection of 193 exo-miRs. Linear regression was then used to analyze the relationship between the extracted exo-miRs and children's BP, eGFR, and urine electrolyte levels.
Results revealed that three exo-miRs had increased expression with urinary sodium, 17 with urinary sodium-to-potassium ratio, and one with decreased estimated glomerular filtration rate.
"Our findings are encouraging for future studies of noninvasive indicators of kidney and heart health, especially for individuals at an increased risk of kidney dysfunction," said senior author Dr. Alison Sanders, assistant professor of environmental medicine, public health, and pediatrics at Mount Sinai School of Medicine. "Further research may discover different combinations of miRNAs that could inform early diagnosis of a wide range of kidney and cardiac diseases. So many children around the world are at risk of developing cardiorenal problems which can impact their health throughout their lives. Assessment of microRNA expression on a targeted scale could present valuable opportunities to detect and intervene with kidney disease before it can progress. That is why we are so encouraged by our team's work in this vital field."
The urinary microRNA study was published in the February 26, 2021, online edition of the journal Epigenomics.
Related Links:
Mount Sinai School of Medicine
MicroRNAs (miRNAs) are short, non-coding RNAs of approximately 20 nucleotides that act as post-transcriptional regulators by modifying target gene expression. Urinary miRNAs are promising biomarkers of subclinical kidney damage or dysfunction because they reflect kidney signaling and histological changes at the molecular level, enabling early detection of chronic kidney disease or progression of acute kidney injury. Urinary miRNAs are also readily obtained and are stable in stored samples.
Exosomes contain the major fraction of miRNA in urine and consequently are an ideal target to probe for molecular biomarkers of kidney diseases. Exosomes are lipid-enclosed extracellular vesicles measuring 30–150 nanometers in diameter that are released by most cells in the body and play an important role in intercellular communication by carrying bioactive molecules (soluble proteins and nucleic acids such as miRNAs) to a target cell. Exosomes in urine are primarily released from renal epithelial cells derived from renal tubular structures and hold promise as one component of a noninvasive liquid biopsy for detecting molecular changes in distinct nephron regions even in the absence of disease. Thus, the study of miRNA expression in exosomes (exo-miR) presents an opportunity in biomarker discovery for blood pressure (BP) regulation and altered renal signaling by identifying new diagnostic biomarkers and therapeutic targets.
In this light, investigators at the Mount Sinai School of Medicine (New York, NY, USA) sought to understand the relationship between urinary exo-miR expression and children's BP and estimated glomerular filtration rate (eGFR) as well as urinary sodium and potassium levels as correlates of heart and kidney health.
For this study, the investigators extracted exo-miRs from urine samples obtained from 88 healthy Mexican children aged four to six years. The study was conducted in Mexico, since children there are considered to be at much higher risk than American children for many heart and kidney problems. Differential centrifugation of spot urines enabled isolation and detection of 193 exo-miRs. Linear regression was then used to analyze the relationship between the extracted exo-miRs and children's BP, eGFR, and urine electrolyte levels.
Results revealed that three exo-miRs had increased expression with urinary sodium, 17 with urinary sodium-to-potassium ratio, and one with decreased estimated glomerular filtration rate.
"Our findings are encouraging for future studies of noninvasive indicators of kidney and heart health, especially for individuals at an increased risk of kidney dysfunction," said senior author Dr. Alison Sanders, assistant professor of environmental medicine, public health, and pediatrics at Mount Sinai School of Medicine. "Further research may discover different combinations of miRNAs that could inform early diagnosis of a wide range of kidney and cardiac diseases. So many children around the world are at risk of developing cardiorenal problems which can impact their health throughout their lives. Assessment of microRNA expression on a targeted scale could present valuable opportunities to detect and intervene with kidney disease before it can progress. That is why we are so encouraged by our team's work in this vital field."
The urinary microRNA study was published in the February 26, 2021, online edition of the journal Epigenomics.
Related Links:
Mount Sinai School of Medicine
Latest Molecular Diagnostics News
- Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
- Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
- Genetic Marker to Help Children with T-Cell Leukemia Avoid Unnecessary Chemotherapy
- Four-Gene Blood Test Rules Out Bacterial Lung Infection
- New PCR Test Improves Diagnostic Accuracy of Bacterial Vaginosis and Candida Vaginitis
- New Serum Marker-Editing Strategy to Improve Diagnosis of Neurological Diseases
- World’s First Genetic Type 1 Diabetes Risk Test Enables Early Detection
- Blood Test to Help Low-Risk Gastric Cancer Patients Avoid Unnecessary Surgery
- First-Of-Its-Kind Automated System Speeds Myeloma Diagnosis
- Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention
- First Of Its Kind Blood Test Detects Gastric Cancer in Asymptomatic Patients
- Portable Molecular Test Detects STIs at POC in 15 Minutes
- Benchtop Analyzer Runs Chemistries, Immunoassays and Hematology in Single Device
- POC Bordetella Test Delivers PCR-Accurate Results in 15 Minutes
- Pinprick Blood Test Could Detect Disease 10 Years Before Symptoms Appear
- Refined C-Reactive Protein Cutoffs Help Assess Sepsis Risk in Preterm Babies
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more






 Analyzer.jpg)

