Preliminary Predictive Criteria Identified for COVID-19 Cytokine Storm
By LabMedica International staff writers Posted on 05 Jan 2021 |

Image: Preliminary Predictive Criteria Identified For COVID-19 Cytokine Storm (Photo courtesy of University of L’Aquila).
While most of cases of COVID-19 are mild, a sizeable number of patients develop a severe acute hyperimmune response characterized by a cytokine storm (CS). Two forms of CS, hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS), rely on well-established criteria to identify their occurrence.
Results from recent reports suggest that COVID-19-associated CS is a unique form of a hyperinflammatory response, which needs further clinical and laboratory characterization as well as classification criteria. Reports from COVID-19 cohorts and autopsies highlight significant diffuse inflammation and widespread tissue damage, such as renal, cardiac and muscular damage, in addition to pulmonary impairment.
Clinical Scientists from Temple University Hospital (Philadelphia, PA, USA) and their international colleagues studied 513 patients with a confirmed diagnosis of COVID-19 admitted from March 10 to April 1, 2020. All included patients had been hospitalized for up to one week prior to enrollment and demonstrated ground-glass opacity by high-resolution computerized tomography of the chest, as well as a reverse transcriptase PCR for COVID-19 RNA.
The team analyzed laboratory results for the first seven days of hospitalization for each patient and used logistic regression and principal component analysis to determine the predictive criteria. They then used a “genetic algorithm” to find the cutoffs for each laboratory result. They validated the criteria with a second cohort of 258 patients admitted from 18 April 2020 to 30 April 2020 The criteria included a newly devised consensus was based on worsening respiratory and elevation above threefold the upper normal level of at least two of the following markers: C reactive protein (CRP), ferritin, D-dimer, lactate dehydrogenase (LDH) and cardiac troponin.
The investigators reported that the criteria for macrophage activation syndrome, hemophagocytic lymphohistiocytosis and the HScore failed to identify cytokine storm associated with COVID-19. Instead, they used new criteria that included three clusters of laboratory results. These involved inflammation, cell death and tissue damage, and prerenal electrolyte imbalance. These criteria demonstrated a sensitivity of 0.85 and a specificity of 0.8. In addition, they were able to identify patients with longer hospitalization and increased mortality.
The COVID-cytokine storm (CS) group had significantly higher levels of ferritin, CRP and triglycerides, and decreased levels of albumin, all signs of systemic inflammation. Ferritin showed an odds ratio (OR) of 14, indicating an important role in COVID-CS. Strong inflammation was confirmed by the level of interleukin-6 (IL-6), which was elevated in most patients with COVID-19, but significantly higher in COVID-CS (35 pg/mL versus 96 pg/mL). The white blood cells, and especially neutrophils and monocytes, were significantly increased in the COVID-CS group, suggesting an active role of the innate immunity in the storm. The lymphocytes instead were decreased, with averages half of the normal lower limit, suggesting a functional depletion of the adaptive immunity.
Roberto Caricchio, MD, FACR, a Professor of Rheumatology and senior author of the study, said, “Interestingly the criteria could be grouped in three major pathological aspect of COVID-19 disease: inflammation, cell death and tissue damage and prerenal electrolyte imbalance. The patients who met the criteria had three times longer length of hospitalization and six times higher mortality. Importantly the vast majority of patients who met the criteria, did so within the first seven days and half of them at the time of admission. Therefore, the criteria are able to identify the cytokine storm very early during hospitalization.” The study was published on December 14, 2020 in the journal Annals of the Rheumatic Diseases.
Related Links:
Temple University Hospital
Results from recent reports suggest that COVID-19-associated CS is a unique form of a hyperinflammatory response, which needs further clinical and laboratory characterization as well as classification criteria. Reports from COVID-19 cohorts and autopsies highlight significant diffuse inflammation and widespread tissue damage, such as renal, cardiac and muscular damage, in addition to pulmonary impairment.
Clinical Scientists from Temple University Hospital (Philadelphia, PA, USA) and their international colleagues studied 513 patients with a confirmed diagnosis of COVID-19 admitted from March 10 to April 1, 2020. All included patients had been hospitalized for up to one week prior to enrollment and demonstrated ground-glass opacity by high-resolution computerized tomography of the chest, as well as a reverse transcriptase PCR for COVID-19 RNA.
The team analyzed laboratory results for the first seven days of hospitalization for each patient and used logistic regression and principal component analysis to determine the predictive criteria. They then used a “genetic algorithm” to find the cutoffs for each laboratory result. They validated the criteria with a second cohort of 258 patients admitted from 18 April 2020 to 30 April 2020 The criteria included a newly devised consensus was based on worsening respiratory and elevation above threefold the upper normal level of at least two of the following markers: C reactive protein (CRP), ferritin, D-dimer, lactate dehydrogenase (LDH) and cardiac troponin.
The investigators reported that the criteria for macrophage activation syndrome, hemophagocytic lymphohistiocytosis and the HScore failed to identify cytokine storm associated with COVID-19. Instead, they used new criteria that included three clusters of laboratory results. These involved inflammation, cell death and tissue damage, and prerenal electrolyte imbalance. These criteria demonstrated a sensitivity of 0.85 and a specificity of 0.8. In addition, they were able to identify patients with longer hospitalization and increased mortality.
The COVID-cytokine storm (CS) group had significantly higher levels of ferritin, CRP and triglycerides, and decreased levels of albumin, all signs of systemic inflammation. Ferritin showed an odds ratio (OR) of 14, indicating an important role in COVID-CS. Strong inflammation was confirmed by the level of interleukin-6 (IL-6), which was elevated in most patients with COVID-19, but significantly higher in COVID-CS (35 pg/mL versus 96 pg/mL). The white blood cells, and especially neutrophils and monocytes, were significantly increased in the COVID-CS group, suggesting an active role of the innate immunity in the storm. The lymphocytes instead were decreased, with averages half of the normal lower limit, suggesting a functional depletion of the adaptive immunity.
Roberto Caricchio, MD, FACR, a Professor of Rheumatology and senior author of the study, said, “Interestingly the criteria could be grouped in three major pathological aspect of COVID-19 disease: inflammation, cell death and tissue damage and prerenal electrolyte imbalance. The patients who met the criteria had three times longer length of hospitalization and six times higher mortality. Importantly the vast majority of patients who met the criteria, did so within the first seven days and half of them at the time of admission. Therefore, the criteria are able to identify the cytokine storm very early during hospitalization.” The study was published on December 14, 2020 in the journal Annals of the Rheumatic Diseases.
Related Links:
Temple University Hospital
Latest Immunology News
- Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
- Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more