Single-Cell Sequencing Reveals Clonal Diversity Among AML Patients
By LabMedica International staff writers Posted on 03 Nov 2020 |

Image: The NovaSeq 6000 Sequencing System (Photo courtesy of Illumina).
A growing body of evidence supports the role of clonal diversity in therapeutic resistance, recurrence, and poor outcomes in cancer. Clonal diversity also reflects the history of the accumulation of somatic mutations within a tumor.
The ability to infer clonal heterogeneity and tumor phylogeny from bulk sequencing data is inherently limited, because bulk sequencing techniques cannot reliably infer mutation co-occurrences and hence often fail in accurately reconstructing clonal substructure. Single-cell DNA sequencing (scDNA-seq) can address some of these challenges.
A large team of scientists at the University of Texas MD Anderson Cancer Center (Houston, TX, USA) analyzed 154 samples (140 bone marrow mononuclear cells (BMMCs) and 14 peripheral blood mononuclear cells) from 123 patients with acute myeloid leukemia (AML) who had at least one somatic mutation covered by the targeted panel for scDNA-seq. Of the 123 patients, 108 patients were analyzed for the single-timepoint sample collected at pre-treatment (N = 98) or relapsed/refractory timepoint (N = 10). Among 123 patients, 97 were analyzed by scDNA-seq, 23 were analyzed by the simultaneous single-cell DNA and cell surface protein sequencing (scDNA+protein-seq), and three were analyzed by scDNA-seq and scDNA+protein-seq.
The pooled library was sequenced by one of the following sequencing platforms, MiSeq, HiSeq 4000, or NovaSeq 6000 (Illumina, Sand Diego, CA, USA) with 150- or 250-base pair (bp) paired-end multiplexed runs. The team performed droplet digital PCR (ddPCR) using QX200 Droplet Digital System (Bio-Rad Laboratories, Hercules, CA, USA) to confirm the variants that were detected by scDNA-seq, but were not detected by bulk-seq. Simultaneous profiling of DNA mutation and cell-surface immunophenotype (scDNA+protein-seq) was performed using the custom-designed panel kit and 10–15 oligo-conjugated antibodies (Mission Bio, South San Francisco, CA, USA). Immunophenotypes of the bone marrow cells from AML patients were assessed using eight-color flow cytometry on FACSCanto II (BD Biosciences, San Jose, CA, USA).
In all, the scientists sequenced more than 730,000 cells to find 543 somatic mutations in 31 cancer-related genes, 98% of which they orthogonally validated. The most common mutations they detected were in NPM1, followed by ones in DNMT3A and NRAS. They further found that while a number of mutations that were functionally redundant were found in the same patients, the alterations were often found in mutually exclusive clones. This extended to alterations affecting receptor tyrosine kinase (RTK)/Gas GTPase (RAS)/MAP kinase (MAPK) signaling pathway genes as well as IDH1 and IDH2 mutations and TET2 and IDH mutations. This suggested to the scientists that cells either do not need two mutations or that, when they appear together, the mutations are toxic, which could suggest a potential treatment avenue to investigate.
The investigators also analyzed genotype-phenotype correlations among the cells to find, for instance, that cells with NPM1 or IDH mutations expressed lower levels of CD34 and HLA-DR, while cells with a single TP53 mutations had CD34+CD117+ phenotype, but double TP53 mutations had a monocytic immunophenotype.
Koichi Takahashi, MD, PhD, the senior author of the study, said, “This information is also somewhat available from longitudinal bulk sequencing data longitudinally, but I think single-cell data uniquely provides this meticulous view of clone-by-clone dynamics, which is just simply not possible by bulk sequencing.” The study was published on October 21, 2020 in the journal Nature Communications.
The ability to infer clonal heterogeneity and tumor phylogeny from bulk sequencing data is inherently limited, because bulk sequencing techniques cannot reliably infer mutation co-occurrences and hence often fail in accurately reconstructing clonal substructure. Single-cell DNA sequencing (scDNA-seq) can address some of these challenges.
A large team of scientists at the University of Texas MD Anderson Cancer Center (Houston, TX, USA) analyzed 154 samples (140 bone marrow mononuclear cells (BMMCs) and 14 peripheral blood mononuclear cells) from 123 patients with acute myeloid leukemia (AML) who had at least one somatic mutation covered by the targeted panel for scDNA-seq. Of the 123 patients, 108 patients were analyzed for the single-timepoint sample collected at pre-treatment (N = 98) or relapsed/refractory timepoint (N = 10). Among 123 patients, 97 were analyzed by scDNA-seq, 23 were analyzed by the simultaneous single-cell DNA and cell surface protein sequencing (scDNA+protein-seq), and three were analyzed by scDNA-seq and scDNA+protein-seq.
The pooled library was sequenced by one of the following sequencing platforms, MiSeq, HiSeq 4000, or NovaSeq 6000 (Illumina, Sand Diego, CA, USA) with 150- or 250-base pair (bp) paired-end multiplexed runs. The team performed droplet digital PCR (ddPCR) using QX200 Droplet Digital System (Bio-Rad Laboratories, Hercules, CA, USA) to confirm the variants that were detected by scDNA-seq, but were not detected by bulk-seq. Simultaneous profiling of DNA mutation and cell-surface immunophenotype (scDNA+protein-seq) was performed using the custom-designed panel kit and 10–15 oligo-conjugated antibodies (Mission Bio, South San Francisco, CA, USA). Immunophenotypes of the bone marrow cells from AML patients were assessed using eight-color flow cytometry on FACSCanto II (BD Biosciences, San Jose, CA, USA).
In all, the scientists sequenced more than 730,000 cells to find 543 somatic mutations in 31 cancer-related genes, 98% of which they orthogonally validated. The most common mutations they detected were in NPM1, followed by ones in DNMT3A and NRAS. They further found that while a number of mutations that were functionally redundant were found in the same patients, the alterations were often found in mutually exclusive clones. This extended to alterations affecting receptor tyrosine kinase (RTK)/Gas GTPase (RAS)/MAP kinase (MAPK) signaling pathway genes as well as IDH1 and IDH2 mutations and TET2 and IDH mutations. This suggested to the scientists that cells either do not need two mutations or that, when they appear together, the mutations are toxic, which could suggest a potential treatment avenue to investigate.
The investigators also analyzed genotype-phenotype correlations among the cells to find, for instance, that cells with NPM1 or IDH mutations expressed lower levels of CD34 and HLA-DR, while cells with a single TP53 mutations had CD34+CD117+ phenotype, but double TP53 mutations had a monocytic immunophenotype.
Koichi Takahashi, MD, PhD, the senior author of the study, said, “This information is also somewhat available from longitudinal bulk sequencing data longitudinally, but I think single-cell data uniquely provides this meticulous view of clone-by-clone dynamics, which is just simply not possible by bulk sequencing.” The study was published on October 21, 2020 in the journal Nature Communications.
Latest Hematology News
- Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
- First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Performs Virtual Tissue Staining at Super-Resolution
Conventional histopathology, essential for diagnosing various diseases, typically involves chemically staining tissue samples to reveal cellular structures under a microscope. This process, known as “histochemical... Read more
AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
Pancreatic cancer poses a major global health threat due to its high mortality rate, with 467,409 deaths and 510,992 new cases reported worldwide in 2022. Often referred to as the "king" of all cancers,... Read more
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read moreTechnology
view channel
Inexpensive DNA Coated Electrode Paves Way for Disposable Diagnostics
Many people around the world still lack access to affordable, easy-to-use diagnostics for diseases like cancer, HIV, and influenza. Conventional sensors, while accurate, often rely on expensive equipment... Read more
New Miniature Device to Transform Testing of Blood Cancer Treatments
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for blood cancers like leukemia, offering hope to patients when other treatments fail. However, despite its promise,... Read moreIndustry
view channel
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more