Novel CTC Culture Method Developed to Study Metastatic Cancer
|
By LabMedica International staff writers Posted on 26 Oct 2020 |

Image: Circulating tumor cells (CTCs) are cancer cells that are released and disseminated into the bloodstream and lymphatic system. CTC cultures were successfully propagated from breast epithelial cells (Photo courtesy of Menarini Silicon Biosystems).
Cancer metastasis is responsible for most cancer-associated death. During metastasis, cells that escape the primary tumor into the circulatory system are known as circulating tumor cells (CTCs).
Circulating tumor cells represent a unique population of cells that can be used to investigate the mechanistic underpinnings of metastasis. Unfortunately, current technologies designed for the isolation and capture of CTCs are inefficient. Existing literature for in vitro CTC cultures report low (6% to 20%) success rates.
Scientists from Georgetown University Medical Center (Washington, DC, USA) enrolled from 12 metastatic breast cancer patients representing all three major subtypes, HER2 positive, hormone receptor positive, and triple negative and samples from five healthy donors. After collecting a patient's blood sample, the team removed red blood cells (RBCs) and granulocytes using gradient centrifugation. They then harvest the rest of the cells, including CTCs, and put them into a custom cell culture growth medium for culture, followed by downstream analysis.
To see whether they had indeed cultured CTCs, the group then tested for the presence of epithelial, mesenchymal, and breast tissue markers to establish the cells' tissue of origin using reverse-transcriptase quantitative polymerase chain reaction (qRT-PCR). They selected cytokeratin 5 and 8 and mammaglobin and successfully identified all three biomarkers in all 12 cultures. The team then used RNA-seq on the six samples that yielded sufficient RNA and could be cultured for more than 30 days in order to characterize their gene expression. These six samples all contained CD45+ leukocytes, they noted, which have previously been shown to support CTC survival.
Overall, the investigators identified 7,234 genes that were significantly differentially expressed in the CTCs-containing samples compared to the healthy donors. Increased expression of multiple genes was correlated with a significant drop in overall patient survival, they found. Using multiple bioinformatics tools to confirm that the CTCs in the samples originated from the cancers, the team identified 52 significantly enriched key cancer pathways and 21 enriched genes that are important to breast cancer progression and metastasis. The group mainly found enriched CD8 T cells, neutrophils, and macrophages in the CTC cultures and noted that the isolation technique appeared to favor the survival of macrophages and neutrophils.
Seema Agarwal, PhD, the senior author and associate professor of pathology, said, “We could take DNA and RNA from cultured CTCs and do a detailed genomic analysis that can be done very quickly in a more meaningful way, as prior to expansion, there are very few CTCs in the patient's blood. We don't know whether the cultured cells represent the heterogeneity of the CTCs, but as we move forward, we hope to characterize the heterogeneity of the cells.”
The authors concluded that once profiled, CTCs can provide a significant amount of information based solely on their identity as an intermediary stage of metastasis. Comparison of CTCs with primary tumors would enable the identification of metastatic drivers and lead to the development of metastasis-preventing therapies. Thus, having a standardized method for the capture and culture of CTCs is a pressing need. The study was published on September 28, 2020 in the journal Cancers.
Related Links:
Georgetown University Medical Center
Circulating tumor cells represent a unique population of cells that can be used to investigate the mechanistic underpinnings of metastasis. Unfortunately, current technologies designed for the isolation and capture of CTCs are inefficient. Existing literature for in vitro CTC cultures report low (6% to 20%) success rates.
Scientists from Georgetown University Medical Center (Washington, DC, USA) enrolled from 12 metastatic breast cancer patients representing all three major subtypes, HER2 positive, hormone receptor positive, and triple negative and samples from five healthy donors. After collecting a patient's blood sample, the team removed red blood cells (RBCs) and granulocytes using gradient centrifugation. They then harvest the rest of the cells, including CTCs, and put them into a custom cell culture growth medium for culture, followed by downstream analysis.
To see whether they had indeed cultured CTCs, the group then tested for the presence of epithelial, mesenchymal, and breast tissue markers to establish the cells' tissue of origin using reverse-transcriptase quantitative polymerase chain reaction (qRT-PCR). They selected cytokeratin 5 and 8 and mammaglobin and successfully identified all three biomarkers in all 12 cultures. The team then used RNA-seq on the six samples that yielded sufficient RNA and could be cultured for more than 30 days in order to characterize their gene expression. These six samples all contained CD45+ leukocytes, they noted, which have previously been shown to support CTC survival.
Overall, the investigators identified 7,234 genes that were significantly differentially expressed in the CTCs-containing samples compared to the healthy donors. Increased expression of multiple genes was correlated with a significant drop in overall patient survival, they found. Using multiple bioinformatics tools to confirm that the CTCs in the samples originated from the cancers, the team identified 52 significantly enriched key cancer pathways and 21 enriched genes that are important to breast cancer progression and metastasis. The group mainly found enriched CD8 T cells, neutrophils, and macrophages in the CTC cultures and noted that the isolation technique appeared to favor the survival of macrophages and neutrophils.
Seema Agarwal, PhD, the senior author and associate professor of pathology, said, “We could take DNA and RNA from cultured CTCs and do a detailed genomic analysis that can be done very quickly in a more meaningful way, as prior to expansion, there are very few CTCs in the patient's blood. We don't know whether the cultured cells represent the heterogeneity of the CTCs, but as we move forward, we hope to characterize the heterogeneity of the cells.”
The authors concluded that once profiled, CTCs can provide a significant amount of information based solely on their identity as an intermediary stage of metastasis. Comparison of CTCs with primary tumors would enable the identification of metastatic drivers and lead to the development of metastasis-preventing therapies. Thus, having a standardized method for the capture and culture of CTCs is a pressing need. The study was published on September 28, 2020 in the journal Cancers.
Related Links:
Georgetown University Medical Center
Latest Pathology News
- Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
- AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
- AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
- Diagnostic Technology Performs Rapid Biofluid Analysis Using Single Droplet
- Novel Technology Tracks Hidden Cancer Cells Faster
- AI Tool Improves Breast Cancer Detection
- AI Tool Predicts Treatment Success in Rectal Cancer Patients
- Blood Test and Sputum Analysis Predict Acute COPD Exacerbation
- AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy
- Unique Immune Signatures Distinguish Rare Autoimmune Condition from Multiple Sclerosis
- Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
- Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
- AI Tool Improves Accuracy of Skin Cancer Detection
- Highly Sensitive Imaging Technique Detects Myelin Damage
- 3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
- New Molecular Analysis Tool to Improve Disease Diagnosis
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








