We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Click Chip’ Detects Early-Stage Liver Cancer Biomarkers in Extracellular Vesicles

By LabMedica International staff writers
Posted on 21 Sep 2020
Print article
Image: The QX200 droplet digital polymerase chain reaction (ddPCR) instrument (Photo courtesy of Bio-Rad).
Image: The QX200 droplet digital polymerase chain reaction (ddPCR) instrument (Photo courtesy of Bio-Rad).
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related deaths worldwide. The poor prognosis of HCC can be attributed to the fact that diagnosis is often made at a late stage in disease development.

Earlier detection of HCC is critical to reducing high HCC mortality rates, as potentially curative therapeutic interventions are available to treat early-stage HCC. The development of noninvasive diagnostics for early-stage HCC may significantly benefit cirrhotic patients at risk for developing HCC.

A team of scientists from the University of California, Los Angeles (Los Angeles, CA, USA) developed an HCC extracellular vesicles (EV) purification system (called EV Click Chips) by synergistically integrating covalent chemistry-mediated EV capture/release, multimarker antibody cocktails, nanostructured substrates, and microfluidic chaotic mixers. The Click Chip platform comprises a custom microfluidic chip that integrates tetrazine antibody (Tz)-grafted silicon nanowire substrates with a network of microchannels altered to induce chaotic mixing. To perform biorthogonal ligation-mediated capture, the team grafts trans-cyclooctene (TCO)-modified capture antibodies to EVs in a liquid sample, such as blood or urine. When the sample runs through the chip, the Tz and TCO react and bind to the EVs.

The group then injected 150-μl plasma samples into EV Click Chips from a cohort of 153 patients, including 46 treatment-naïve HCC patients and a control group that included patients with liver cirrhosis, chronic hepatitis B/C without liver cirrhosis, other cancers with or without metastasis, and healthy donors. After immobilizing HCC-specific EVs on the Click Chip platform, the team then eluted the targeted EVs out of the chips.

To avoid signals from non-HCC-specific EVs, Tseng's team detected and quantified HCC EV-specific gene expression after extracting mRNA by lysing collected EVs from the plasma samples. After running a customized panel using the QX200 ddPCR instrument, (Bio-Rad, Hercules, CA. USA), the team analyzed the data to quantify copy numbers of gene transcripts detected for each gene and computed a digital score that distinguished HCC patients from at-risk cirrhotic patients.

The investigators found that EV Click Chip had a clinical sensitivity of 94% and specificity of 89% with an area under the operating curve of 0.93, for early-stage HCC cancer detection. In addition, the EV Click Chip distinguished HCC from non-cancer (liver cirrhosis, chronic hepatitis, and health donors) and other cancer cohorts, with a clinical sensitivity of about 96% and specificity of 89%.

Hsian-Rong Tseng, PhD, a Professor, Molecular & Medical Pharmacology and a senior author of the study, said, “We wanted to directly target tumor-derived EVs and therefore use Click Chip chemistry to purify the EVs, rather than antigen-antibody or immunoaffinity-based EV isolation methods.” He noted that EV Click Chip's surface markers can be replaced with different tumor-specific markers to capture other types of tumor-derived EVs. His team has found that EV Click Chip can be used to purify tumor-derived EVs in both Ewing sarcoma and liver cancer by applying different markers. The study was published on September 7, 2020 in the journal Nature Communications.




New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more