LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Immune Cells Hampered Fighting Soft Tissue and Bone Sarcomas

By LabMedica International staff writers
Posted on 06 Jul 2020
Print article
Image: Aggregates of immune cells known as tertiary lymphoid structures (TLSs), seen here within a tumor of the soft tissues known as a rhabdomyosarcoma, are major players in the immune system’s fight against cancer (Photo courtesy of Johns Hopkins Kimmel Cancer Center).
Image: Aggregates of immune cells known as tertiary lymphoid structures (TLSs), seen here within a tumor of the soft tissues known as a rhabdomyosarcoma, are major players in the immune system’s fight against cancer (Photo courtesy of Johns Hopkins Kimmel Cancer Center).
Immunotherapies such as checkpoint inhibitors that enhance the body's natural ability to fight cancer have been only minimally successful in treating sarcomas which are rare cancers that grow in the soft tissues and bones.

There are many subtypes of sarcoma, which are classified based on the specific tissue and type of cell from which the tumor originates. Sarcomas are primary connective tissue tumors, meaning that they arise in connective tissues. This is in contrast to secondary (or "metastatic") connective tissue tumors, which occur when a cancer from elsewhere in the body (such as the lungs, breast tissue or prostate) spreads to the connective tissue.

Oncologists at the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) and their numerous colleagues interrogated the tumor microenvironment (TME) of two contrasting soft-tissue sarcomas (STS), rhabdomyosarcomas and undifferentiated pleomorphic sarcomas (UPS), with differing genetic underpinnings and responses to immune checkpoint inhibition to understand the mechanisms that lead to response. The team used fresh and formalin-fixed, paraffin-embedded tissue from patients diagnosed with UPS and rhabdomyosarcomas, and dissected the TME by using immunohistochemistry (IHC), flow cytometry, and comparative transcriptomic studies.

The investigators discovered that both tumor types were ripe with tumor-associated macrophages (TAMs). Heavily involved in promoting tumor initiation and growth, TAMs hamper the proper immune reaction against tumors. Additionally, both sarcomas had similar amounts of CD8+ T lymphocytes (CD 8+ T cells are also known as "killer T cells"), immune system cells that protect the body from infection and are believed to be among the front-line soldiers in the fight against cancers. They also discovered that where the CD8+ T cells congregated and how their antitumor functions were impeded by TAMs differed in the two sarcomas.

In UPS, the group found that the tumors themselves were filled with TAMs and CD8+ T cells. With constant stimulation by tumor antigens, CD8+ cells produce large amounts of PD-1, a protein that eventually exhausts the T cell population. When this happens, the authors suggest, and TAMs control the environment, normal T cell activity against the cancer is suppressed. In rhabdomyosarcomas, they found CD8+ T cells only within tiny aggregates of immune cells called tertiary lymphoid structures (TLSs). TLSs are known to play a major role in initiating antitumor immune responses, helping the immune system recognize cancer cells as targets.

Nicolas Llosa, MD, an assistant professor of oncology and senior author of the study said, “The basis of successful immunotherapy lies in the ability of the immune system to recognize cancer as foreign and attack, and is dependent on genetics, host and environmental factors, and makeup of the tumor microenvironment. We need to understand the immune niche that sustains these tumors and how it supports tolerance, so we can determine what drug targets could be used to help mount a better response.”

The authors concluded that their work in soft tissue sarcomas revealed an immunosuppressive TME dominated by myeloid cells, which may be overcome with activation of T cells that traffic into the tumor. In rhabdomyosarcomas, targeting T cells found within TLS may be crucial to achieve antitumor response. The study was published on June 16, 2020 in the journal Clinical Cancer Research.

Related Links:
Johns Hopkins Kimmel Cancer Center

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultrasonic Cleaner
UC 300 Series
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The breakthrough could result in a higher success rate using a simple oral swab test before IVF (Photo courtesy of Shutterstock)

POC Oral Swab Test to Increase Chances of Pregnancy in IVF

Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more